Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Jul 1;50(6):259–292.

Cell Motility by Labile Association of Molecules

The nature of mitotic spindle fibers and their role in chromosome movement

Shinya Inoué 1, Hidemi Sato 1
PMCID: PMC2225745  PMID: 6058222

Abstract

This article summarizes our current views on the dynamic structure of the mitotic spindle and its relation to mitotic chromosome movements. The following statements are based on measurements of birefringence of spindle fibers in living cells, normally developing or experimentally modified by various physical and chemical agents, including high and low temperatures, antimitotic drugs, heavy water, and ultraviolet microbeam irradiation. Data were also obtained concomitantly with electron microscopy employing a new fixative and through measurements of isolated spindle protein. Spindle fibers in living cells are labile dynamic structures whose constituent filaments (microtubules) undergo cyclic breakdown and reformation. The dynamic state is maintained by an equilibrium between a pool of protein molecules and their linearly aggregated polymers, which constitute the microtubules or filaments. In living cells under physiological conditions, the association of the molecules into polymers is very weak (absolute value of ΔF 25°C < 1 kcal), and the equilibrium is readily shifted to dissociation by low temperature or by high hydrostatic pressure. The equilibrium is shifted toward formation of polymer by increase in temperature (with a large increase in entropy: ΔS 25°C ≃ 100 eu) or by the addition of heavy water. The spindle proteins tend to polymerize with orienting centers as their geometrical foci. The centrioles, kinetochores, and cell plate act as orienting centers successively during mitosis. Filaments are more concentrated adjacent to an orienting center and yield higher birefringence. Astral rays, continuous fibers, chromosomal fibers, and phragmoplast fibers are thus formed by successive reorganization of the same protein molecules. During late prophase and metaphase, polymerization takes place predominantly at the kinetochores; in metaphase and anaphase, depolymerization is prevalent near the spindle poles. When the concentration of spindle protein is high, fusiform bundles of polymer are precipitated out even in the absence of obvious orienting centers. The shift of equilibrium from free protein molecules to polymer increases the length and number of the spindle microtubules or filaments. Slow depolymerization of the polymers, which can be brought about by low concentrations of colchicine or by gradual cooling, allows the filaments to shorten and perform work. The dynamic equilibrium controlled by orienting centers and other factors provides a plasusible mechanism by which chromosomes and other organelles, as well as the cell surface, are deformed or moved by temporarily organized arrays of microtubules or filaments.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON N. G. Cell division. II. A theoretical approach to chromosomal movements and the division of the cell. Q Rev Biol. 1956 Dec;31(4):243–269. doi: 10.1086/401478. [DOI] [PubMed] [Google Scholar]
  2. BAJER A. CINE MICROGRAPHIC ANALYSIS OF CELL PLATE FORMATION IN ENDOSPERM. Exp Cell Res. 1965 Feb;37:376–398. doi: 10.1016/0014-4827(65)90186-2. [DOI] [PubMed] [Google Scholar]
  3. BAJER A. Ciné-micrographic studies on mitosis in endosperm. III. The origin of the mitotic spindle. Exp Cell Res. 1957 Dec;13(3):493–502. doi: 10.1016/0014-4827(57)90078-2. [DOI] [PubMed] [Google Scholar]
  4. BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CARLSON J. G. Microdissection studies of the dividing neuroblast of the grasshopper, Chortophaga viridifasciata; de Geer. Chromosoma. 1952;5(3):199–220. doi: 10.1007/BF01271487. [DOI] [PubMed] [Google Scholar]
  6. CLAUDE A. Problems of fixation for electron microscopy. Results of fixation with osmium tetroxide in acid and alkaline media. Pathol Biol. 1961 Apr;9:933–947. [PubMed] [Google Scholar]
  7. Ellis G. W. Piezoelectric Micromanipulators: Electrically operated micromanipulators add automatic high-speed movement to normal manual control. Science. 1962 Oct 12;138(3537):84–91. doi: 10.1126/science.138.3537.84. [DOI] [PubMed] [Google Scholar]
  8. Forer A. Characterization of the mitotic traction system, and evidence that birefringent spindle fibers neither produce nor transmit force for chromosome movement. Chromosoma. 1966;19(1):44–98. doi: 10.1007/BF00332793. [DOI] [PubMed] [Google Scholar]
  9. GROSS P. R., SPINDEL W. Mitotic arrest by deuterium oxide. Science. 1960 Jan 1;131(3392):37–38. doi: 10.1126/science.131.3392.37. [DOI] [PubMed] [Google Scholar]
  10. GROSS P. R., SPINDEL W. The inhibition of mitosis by deuterium. Ann N Y Acad Sci. 1960 Nov 25;84:745–754. doi: 10.1111/j.1749-6632.1960.tb39106.x. [DOI] [PubMed] [Google Scholar]
  11. HARRIS P. Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J Cell Biol. 1962 Sep;14:475–487. doi: 10.1083/jcb.14.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. INOUE S. On the physical properties of the mitotic spindle. Ann N Y Acad Sci. 1960 Oct 7;90:529–530. doi: 10.1111/j.1749-6632.1960.tb23269.x. [DOI] [PubMed] [Google Scholar]
  13. Ikkai T., Ooi T. The effects of pressure on F-G transformation of actin. Biochemistry. 1966 May;5(5):1551–1560. doi: 10.1021/bi00869a015. [DOI] [PubMed] [Google Scholar]
  14. KANE R. E. THE MITOTIC APPARATUS. PHYSICAL-CHEMICAL FACTORS CONTROLLING STABILITY. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:144. doi: 10.1083/jcb.25.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KANE R. E. The mitotic apparatus: isolation by controlled pH. J Cell Biol. 1962 Jan;12:47–55. doi: 10.1083/jcb.12.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KLOTZ I. M. Non-covalent bonds in protein structure. Brookhaven Symp Biol. 1960 Nov;13:25–48. [PubMed] [Google Scholar]
  17. KLOTZ I. M. Protein hydration and behavior; many aspects of protein behavior can be interpreted in terms of frozen water of hydration. Science. 1958 Oct 10;128(3328):815–822. doi: 10.1126/science.128.3328.815. [DOI] [PubMed] [Google Scholar]
  18. Kane R. E., Forer A. The mitotic apparatus. Structural changes after isolation. J Cell Biol. 1965 Jun;25(3 Suppl):31–39. doi: 10.1083/jcb.25.3.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kane R. E. The mitotic apparatus. Identification of the major soluble component of the glycol-isolated mitotic apparatus. J Cell Biol. 1967 Feb;32(2):243–253. doi: 10.1083/jcb.32.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kiefer B., Sakai H., Solari A. J., Mazia D. The molecular unit of the microtubules of the mitotic apparatus. J Mol Biol. 1966 Sep;20(1):75–79. doi: 10.1016/0022-2836(66)90118-5. [DOI] [PubMed] [Google Scholar]
  21. LAUFFER M. A., ANSEVIN A. T., CARTWRIGHT T. E., BRINTON C. C., Jr Polymerization-depolymerization of tobacco mosaic virus protein. Nature. 1958 May 10;181(4619):1338–1339. doi: 10.1038/1811338b0. [DOI] [PubMed] [Google Scholar]
  22. MARSLAND D. PARTIAL REVERSAL OF THE ANTI-MITOTIC EFFECTS OF HEAVY WATER BY HIGH HYDROSTATIC PRESSURE. AN ANALYSIS OF THE FIRST CLEAVAGE DIVISON IN THE EGGS OF STRONGYLOCENTROTUS PURPURATUS. Exp Cell Res. 1965 Jun;38:592–603. doi: 10.1016/0014-4827(65)90383-6. [DOI] [PubMed] [Google Scholar]
  23. MARSLAND D., ZIMMERMAN A. M. STRUCTURAL STABILIZATION OF THE MITOTIC APPARATUS BY HEAVY WATER, IN THE CLEAVING EGGS OF ARBACIA PUNCTULATA; INCREASED RESISTANCE TO PRESSURE-INDUCED DISORGANIZATION. Exp Cell Res. 1965 May;38:306–313. doi: 10.1016/0014-4827(65)90406-4. [DOI] [PubMed] [Google Scholar]
  24. MOLE-BAJER J. Cine-micrographic analysis of C-mitosis in endosperm. Chromosoma. 1958;9(4):332–358. doi: 10.1007/BF02568085. [DOI] [PubMed] [Google Scholar]
  25. Marsland D. Anti-mitotic effects of colchicine and hydrostatic pressure; synergistic action on the cleaving eggs of Lytechinus variegatus. J Cell Physiol. 1966 Apr;67(2):333–338. doi: 10.1002/jcp.1040670213. [DOI] [PubMed] [Google Scholar]
  26. Marsland D., Hiramoto Y. Cell division: pressure-induced reversal of the antimeiotic effects of heavy water in the oocytes of the starfish, Asterias forbesi. J Cell Physiol. 1966 Feb;67(1):13–21. doi: 10.1002/jcp.1040670103. [DOI] [PubMed] [Google Scholar]
  27. NACHMIAS V. T. FIBRILLAR STRUCTURES IN THE CYTOPLASM OF CHAOS CHAOS. J Cell Biol. 1964 Oct;23:183–188. doi: 10.1083/jcb.23.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nagai R., Rebhun L. I. Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res. 1966 Mar;14(5):571–589. doi: 10.1016/s0022-5320(66)80083-7. [DOI] [PubMed] [Google Scholar]
  29. PORTER K. R., MACHADO R. D. Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J Biophys Biochem Cytol. 1960 Feb;7:167–180. doi: 10.1083/jcb.7.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. ROBINSON D. R., JENCKS W. P. THE EFFECT OF COMPOUNDS OF THE UREA-GUANIDINIUM CLASS ON THE ACTIVITY COEFFICIENT OF ACETYLTETRAGLYCINE ETHYL ESTER AND RELATED COMPOUNDS. J Am Chem Soc. 1965 Jun 5;87:2462–2470. doi: 10.1021/ja01089a028. [DOI] [PubMed] [Google Scholar]
  32. Sakai H. Studies on sulfhydryl groups during cell division of sea-urchin eggs. 8. Some properties of mitotic apparatus proteins. Biochim Biophys Acta. 1966 Jan 4;112(1):132–145. doi: 10.1016/s0926-6585(96)90015-1. [DOI] [PubMed] [Google Scholar]
  33. Scheraga H. A. Contractility and conformation. J Gen Physiol. 1967 Jul;50(6 Suppl):5–27. doi: 10.1085/jgp.50.6.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Scott E., Berns D. S. Protein-protein interaction. The phycocyanin system. Biochemistry. 1965 Dec;4(12):2597–2606. doi: 10.1021/bi00888a008. [DOI] [PubMed] [Google Scholar]
  35. Szent-Györgyi A. G., Prior G. Exchange of adenosine diphosphate bound to actin in superprecipitated actomyosin and contracted myofibrils. J Mol Biol. 1966 Feb;15(2):515–538. doi: 10.1016/s0022-2836(66)80125-0. [DOI] [PubMed] [Google Scholar]
  36. THEG D. E. CYTOPLASMIC MICROTUBULES IN DIFFERENT ANIMAL CELLS. J Cell Biol. 1964 Nov;23:265–275. doi: 10.1083/jcb.23.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]
  39. ZIMMERMAN A. M., MARSLAND D. CELL DIVISION: EFFECTS OF PRESSURE ON THE MITOTIC MECHANISMS OF MARINE EGGS (ARBACIA PUNCTULATA). Exp Cell Res. 1964 Jul;35:293–302. doi: 10.1016/0014-4827(64)90096-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES