Abstract
Cation composition of frog smooth muscle cells was investigated. Fresh stomach muscle rings resembled skeletal muscle, but marked Na gain and K loss followed immersion. Mean Na (49.8–79.7 mM/kg tissue) and K (61.8–80.1 mM/kg tissue) varied between batches, but were stable for long periods in vitro. Exchange of 6–30 mM Na/kg tissue with 22Na was extremely slow and distinct. Extracellular water was estimated from sucrose-14C uptake. Calculated exchangeable intracellular Na was 9 mM/kg cell water, and varied little. Thus steady-state transmembrane cation gradients appeared to be steep. K-free solution had only slight effects. Ouabain (10-4 M) caused marked Na gain and reciprocal K loss; at 30°C, Na and K varied linearly with time over a wide range of contents, indicating constant net fluxes. Net fluxes decreased with temperature decrease. 22Na exchange in ouabain-treated tissue at 20–30°C was rapid and difficult to analyze. The best minimum estimates of unidirectional Na fluxes at 30°C were 10–12 times the constant net flux; constant pump efflux may explain these findings. The rapidity of Na exchange may not reflect very high permeability, but it does require a high rate of transport work.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARMSTRONG W. M. SODIUM, POTASSIUM, AND CHLORIDE IN FROG STOMACH MUSCLE. Am J Physiol. 1964 Mar;206:469–475. doi: 10.1152/ajplegacy.1964.206.3.469. [DOI] [PubMed] [Google Scholar]
- BARR L., MALVIN R. L. ESTIMATION OF EXTRACELLULAR SPACES OF SMOOTH MUSCLE USING DIFFERENT-SIZED MOLECULES. Am J Physiol. 1965 May;208:1042–1045. doi: 10.1152/ajplegacy.1965.208.5.1042. [DOI] [PubMed] [Google Scholar]
- BOZLER E., CALVIN M. E., WATSON D. W. Exchange of electrolytes in smooth muscle. Am J Physiol. 1958 Oct;195(1):38–44. doi: 10.1152/ajplegacy.1958.195.1.38. [DOI] [PubMed] [Google Scholar]
- BURNSTOCK G., DEWHURST D. J., SIMON S. E. Sodium exchange in smooth muscle. J Physiol. 1963 Jul;167:210–228. doi: 10.1113/jphysiol.1963.sp007142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURNSTOCK G., HOLMAN M. E., PROSSER C. L. Electrophysiology of smooth muscle. Physiol Rev. 1963 Jul;43:482–527. doi: 10.1152/physrev.1963.43.3.482. [DOI] [PubMed] [Google Scholar]
- Buck B., Goodford P. J. The distribution of ions in the smooth muscle of the guinea-pig taenia coli. J Physiol. 1966 Apr;183(3):551–569. doi: 10.1113/jphysiol.1966.sp007883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DANIEL E. E., ROBINSON K. The secretion of sodium and uptake of potassium by isolated uterine segments made sodium-rich. J Physiol. 1960 Dec;154:421–444. doi: 10.1113/jphysiol.1960.sp006589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FREEMAN-NARROD M., GOODFORD P. J. Sodium and potassium content of the smooth muscle of the guinea-pig taenia coli at different temperatures and tensions. J Physiol. 1962 Oct;163:399–410. doi: 10.1113/jphysiol.1962.sp006985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOODFORD P. J. CHLORIDE CONTENT AND 36CL UPTAKE IN THE SMOOTH MUSCLE OF THE GUINEA-PIG TAENIA COLI. J Physiol. 1964 Mar;170:227–237. doi: 10.1113/jphysiol.1964.sp007326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrahan P., Villamil M. F., Zadunaisky J. A. Sodium exchange and distribution in the arterial wall. Am J Physiol. 1965 Nov;209(5):955–960. doi: 10.1152/ajplegacy.1965.209.5.955. [DOI] [PubMed] [Google Scholar]
- HARRIS E. J., STEINBACH H. B. The extraction of ions from muscle by water and sugar solutions with a study of the degree of exchange with tracer of the sodium and potassium in the extracts. J Physiol. 1956 Aug 28;133(2):385–401. doi: 10.1113/jphysiol.1956.sp005594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAO C. Y. Contents and distributions of potassium, sodium, and chloride in uterine smooth muscle. Am J Physiol. 1961 Oct;201:717–722. doi: 10.1152/ajplegacy.1961.201.4.717. [DOI] [PubMed] [Google Scholar]
- KAO C. Y., SIEGMAN M. J. NATURE OF ELECTROLYTE EXCHANGE IN ISOLATED UTERINE SMOOTH MUSCLE. Am J Physiol. 1963 Oct;205:674–680. doi: 10.1152/ajplegacy.1963.205.4.674. [DOI] [PubMed] [Google Scholar]
- KAO C. Y., ZAKIM D., BRONNER F. Sodium influx and excitation in uterine smooth muscle. Nature. 1961 Dec 23;192:1189–1190. doi: 10.1038/1921189a0. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OGSTON A. G., PHELPS C. F. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem J. 1961 Apr;78:827–833. doi: 10.1042/bj0780827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WINEGRAD S., SHANES A. M. Calcium flux and contractility in guinea pig atria. J Gen Physiol. 1962 Jan;45:371–394. doi: 10.1085/jgp.45.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
