Abstract
The heart's physiological performance, unlike that of skeletal muscle, is regulated primarily by variations in the contractile force developed by the individual myocardial fibers. In an attempt to identify the basis for the characteristic properties of myocardial contraction, the individual cardiac contractile proteins and their behavior in contractile models in vitro have been examined. The low shortening velocity of heart muscle appears to reflect the weak ATPase activity of cardiac myosin, but this enzymatic activity probably does not determine active state intensity. Quantification of the effects of Ca++ upon cardiac actomyosin supports the view that myocardial contractility can be modified by changes in the amount of calcium released during excitation-contraction coupling. Exchange of intracellular K+ with Na+ derived from the extracellular space also could enhance myocardial contractility directly, as highly purified cardiac actomyosin is stimulated when K+ is replaced by an equimolar amount of Na+. On the other hand, cardiac glycosides and catecholamines, agents which greatly increase the contractility of the intact heart, were found to be without significant actions upon highly purified reconstituted cardiac actomyosin.
Full Text
The Full Text of this article is available as a PDF (695.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABBOTT B. C., MOMMAERTS W. F. A study of inotropic mechanisms in the papillary muscle preparation. J Gen Physiol. 1959 Jan 20;42(3):533–551. doi: 10.1085/jgp.42.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azuma N., Watanabe S. The minor component of metin from rabbit skeletal muscle. J Biol Chem. 1965 Oct;240(10):3852–3857. [PubMed] [Google Scholar]
- BARANY M., BARANY K., RECKARD T., VOLPE A. MYOSIN OF FAST AND SLOW MUSCLES OF THE RABBIT. Arch Biochem Biophys. 1965 Jan;109:185–191. doi: 10.1016/0003-9861(65)90304-8. [DOI] [PubMed] [Google Scholar]
- BARANY M., GAETJENS E., BARANY K., KARP E. COMPARATIVE STUDIES OF RABBIT CARDIAC AND SKELETAL MYOSINS. Arch Biochem Biophys. 1964 Jul 20;106:280–293. doi: 10.1016/0003-9861(64)90189-4. [DOI] [PubMed] [Google Scholar]
- BURCH G. E., RAY C. T., CRONVICH J. A. Certain mechanical peculiarities of the human cardiac pump in normal and diseased states. Circulation. 1952 Apr;5(4):504–513. doi: 10.1161/01.cir.5.4.504. [DOI] [PubMed] [Google Scholar]
- BURTON A. C. The importance of the shape and size of the heart. Am Heart J. 1957 Dec;54(6):801–810. doi: 10.1016/0002-8703(57)90186-2. [DOI] [PubMed] [Google Scholar]
- Bailey K. Myosin and adenosinetriphosphatase. Biochem J. 1942 Feb;36(1-2):121–139. doi: 10.1042/bj0360121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS J. O., CARROLL W. R., TRAPASSO M., YANKOPOULOS N. A. Chemical characterization of cardiac myosin from normal dogs and from dogs with chronic congestive heart failure. J Clin Invest. 1960 Sep;39:1463–1471. doi: 10.1172/JCI104165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebashi S., Kodama A. Native tropomyosin-like action of troponin on trypsin-treated myosin B. J Biochem. 1966 Dec;60(6):733–734. doi: 10.1093/oxfordjournals.jbchem.a128504. [DOI] [PubMed] [Google Scholar]
- Ebert J. D. An Analysis of the Synthesis and Distribution of the Contractile Protein, Myosin, in the Development of the Heart. Proc Natl Acad Sci U S A. 1953 Apr;39(4):333–344. doi: 10.1073/pnas.39.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FANBURG B., FINKEL R. M., MARTONOSI A. THE ROLE OF CALCIUM IN THE MECHANISM OF RELAXATION OF CARDIAC MUSCLE. J Biol Chem. 1964 Jul;239:2298–2305. [PubMed] [Google Scholar]
- Finck H. Immunochemical studies on myosin. 3. Immunochemical comparison of myosins from chicken skeletal heart and smooth muscles. Biochim Biophys Acta. 1965 Nov 15;111(1):231–238. [PubMed] [Google Scholar]
- Gordon A. M., Huxley A. F., Julian F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966 May;184(1):170–192. doi: 10.1113/jphysiol.1966.sp007909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAJDU S. Mechanism of staircase and contracture in ventricular muscle. Am J Physiol. 1953 Sep;174(3):371–380. doi: 10.1152/ajplegacy.1953.174.3.371. [DOI] [PubMed] [Google Scholar]
- KATZ A. M., CARSTEN M. E. ACTIN FROM HEART MUSCLE: STUDIES ON AMINO ACID COMPOSITION. Circ Res. 1963 Nov;13:474–477. doi: 10.1161/01.res.13.5.474. [DOI] [PubMed] [Google Scholar]
- KATZ A. M., HALL E. J. ACTIN FROM HEART MUSCLE: ISOLATION, PURIFICATION, AND PHYSICOCHEMICAL PROPERTIES. Circ Res. 1963 Sep;13:187–198. doi: 10.1161/01.res.13.3.187. [DOI] [PubMed] [Google Scholar]
- KATZ A. M. INFLUENCE OF TROPOMYOSIN UPON THE REACTIONS OF ACTOMYOSIN AT LOW IONIC STRENGTH. J Biol Chem. 1964 Oct;239:3304–3311. [PubMed] [Google Scholar]
- KATZ A. M., MAXWELL J. B. ACTIN FROM HEART MUSCLE: SULFHYDRYL GROUPS. Circ Res. 1964 Apr;14:345–350. doi: 10.1161/01.res.14.4.345. [DOI] [PubMed] [Google Scholar]
- KATZ A. M. The influence of cations on the reactivity of the sulfhydryl groups of actin. Biochim Biophys Acta. 1963 May 14;71:397–407. doi: 10.1016/0006-3002(63)91094-1. [DOI] [PubMed] [Google Scholar]
- KAY C. M., GREEN W. A., OIKAWA K. INFLUENCE OF SOLVENT COMPOSITION ON CARDIAC AND SKELETAL MYOSIN A AS DETERMINED BY OPTICAL ROTATORY DISPERSION MEASUREMENTS. Arch Biochem Biophys. 1964 Oct;108:89–98. doi: 10.1016/0003-9861(64)90359-5. [DOI] [PubMed] [Google Scholar]
- KISTIN A. D. Retrograde conduction to the atria in ventricular tachycardia. Circulation. 1961 Aug;24:236–249. doi: 10.1161/01.cir.24.2.236. [DOI] [PubMed] [Google Scholar]
- KOCH-WESER J., BLINKS J. R. THE INFLUENCE OF THE INTERVAL BETWEEN BEATS ON MYOCARDIAL CONTRACTILITY. Pharmacol Rev. 1963 Sep;15:601–652. [PubMed] [Google Scholar]
- Katz A. M. Absence of direct actions of norepinephrine on cardiac myosin and cardiac actomyosin. Am J Physiol. 1967 Jan;212(1):39–42. doi: 10.1152/ajplegacy.1967.212.1.39. [DOI] [PubMed] [Google Scholar]
- Katz A. M. Absence of effects of cardiac glycosides on cardiac myosin and A Ca++-sensitive reconstituted cardiac actomyosin. J Pharmacol Exp Ther. 1966 Dec;154(3):558–565. [PubMed] [Google Scholar]
- Katz A. M. Purification and properties of a tropomyosin-containing protein fraction that sensitizes reconstituted actomyosin to calcium-binding agents. J Biol Chem. 1966 Apr 10;241(7):1522–1529. [PubMed] [Google Scholar]
- Katz A. M., Repke D. I. Control of myocardial contraction: the sensitivity of cardiac actomyosin to calcium ion. Science. 1966 May 27;152(3726):1242–1243. doi: 10.1126/science.152.3726.1242. [DOI] [PubMed] [Google Scholar]
- Katz A. M. The descending limb of the Starling curve and the failing heart. Circulation. 1965 Dec;32(6):871–875. doi: 10.1161/01.cir.32.6.871. [DOI] [PubMed] [Google Scholar]
- MUELLER H., FRANZEN J., RICE R. V., OLSON R. E. CHARACTERIZATION OF CARDIAC MYOSIN FROM THE DOG. J Biol Chem. 1964 May;239:1447–1456. [PubMed] [Google Scholar]
- PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANDOW A. POTENTIATION OF MUSCULAR CONTRACTION. Arch Phys Med Rehabil. 1964 Feb;45:62–81. [PubMed] [Google Scholar]
- Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
- WINEGRAD S., SHANES A. M. Calcium flux and contractility in guinea pig atria. J Gen Physiol. 1962 Jan;45:371–394. doi: 10.1085/jgp.45.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]