Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1967 Aug 1;50(7):1835–1848. doi: 10.1085/jgp.50.7.1835

Effects of Some Inhibitors on the Temperature-Dependent Component of Resting Potential in Lobster Axon

Joseph P Senft 1
PMCID: PMC2225756  PMID: 6050969

Abstract

The resting membrane potential of the lobster axon becomes 5–8 mv more negative when the temperature of the perfusion solution is increased 10°C. This potential change is about twice that predicted if the axon membrane potential followed that expected for a potassium ion electrode potential. When the inhibitors, 2, 4-dinitrophenol, sodium cyanide, and sodium azide, were added separately to the perfusion medium the potential change was reduced to about 1.4 times that predicted for a potassium ion electrode potential. Assays of axons exposed to these inhibitors showed that ATP levels were reduced to about one-fourth that obtained for control axons. Ouabain added to the perfusion medium reduced the potential change to that expected for a potassium ion electrode potential. These results suggest that the resting potential changes with temperature as a result of the activity of an electrogenic ion pump.

Full Text

The Full Text of this article is available as a PDF (889.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABOOD L. G., GOLDMAN E. Inhibition of phosphorylation during electrical excitation of frog nerves. Am J Physiol. 1956 Feb;184(2):329–332. doi: 10.1152/ajplegacy.1956.184.2.329. [DOI] [PubMed] [Google Scholar]
  2. APTER J. T., KOKETSU K. Temperature studies implicating calcium in regulation of muscle membrane potential. J Cell Comp Physiol. 1960 Dec;56:123–127. doi: 10.1002/jcp.1030560302. [DOI] [PubMed] [Google Scholar]
  3. BRINLEY F. J., Jr SODIUM, POTASSIUM, AND CHLORIDE CONCENTRATIONS AND FLUXES IN THE ISOLATED GIANT AXON OF HOMARUS. J Neurophysiol. 1965 Jul;28:742–772. doi: 10.1152/jn.1965.28.4.742. [DOI] [PubMed] [Google Scholar]
  4. Baker P. F. Phosphorus metabolism of intact crab nerve and its relation to the active transport of ions. J Physiol. 1965 Sep;180(2):383–423. doi: 10.1113/jphysiol.1965.sp007709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CALDWELL P. C., HODGKIN A. L., KEYNES R. D., SHAW T. I. Partial inhibition of the active transport of cations in the giant axons of Loligo. J Physiol. 1960 Jul;152:591–600. doi: 10.1113/jphysiol.1960.sp006510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CALDWELL P. C., HODGKIN A. L., KEYNES R. D., SHAW T. L. The effects of injecting 'energy-rich' phosphate compounds on the active transport of ions in the giant axons of Loligo. J Physiol. 1960 Jul;152:561–590. doi: 10.1113/jphysiol.1960.sp006509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CALDWELL P. C. The phosphorus metabolism of squid axons and its relationship to the active transport of sodium. J Physiol. 1960 Jul;152:545–560. doi: 10.1113/jphysiol.1960.sp006508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CHENG S. C. A sensitive assay method for ADP and the determination of ATP, ADP and CrP in single nerve trunks. J Neurochem. 1961 Aug;7:271–277. doi: 10.1111/j.1471-4159.1961.tb13513.x. [DOI] [PubMed] [Google Scholar]
  9. DALTON J. C. Effects of external ions on membrane potentials of a lobster giant axon. J Gen Physiol. 1958 Jan 20;41(3):529–542. doi: 10.1085/jgp.41.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DALTON J. C., HENDRIX D. E. Effects of temperature on membrane potentials of lobster giant axon. Am J Physiol. 1962 Mar;202:491–494. doi: 10.1152/ajplegacy.1962.202.3.491. [DOI] [PubMed] [Google Scholar]
  11. DEFFNER G. G., HAFTER R. E. Chemical investigations of the giant nerve fibers of the squid. I. Fractionation of dialyzable constitutents of axoplasm and quantitative determination of the free amino acids. Biochim Biophys Acta. 1959 Apr;32:362–374. doi: 10.1016/0006-3002(59)90608-0. [DOI] [PubMed] [Google Scholar]
  12. Guttman R. Temperature characteristics of excitation in space-clamped squid axons. J Gen Physiol. 1966 May;49(5):1007–1018. doi: 10.1085/jgp.49.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HODGKIN A. L., KATZ B. The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol. 1949 Aug;109(1-2):240–249. doi: 10.1113/jphysiol.1949.sp004388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KOECHLIN B. A. On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern. J Biophys Biochem Cytol. 1955 Nov 25;1(6):511–529. doi: 10.1083/jcb.1.6.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LARRABEE M. G., KLINGMAN J. D., LEICHT W. S. EFFECTS OF TEMPERATURE, CALCIUM AND ACTIVITY ON PHOSPHOLIPID METABOLISM IN A SYMPATHETIC GANGLION. J Neurochem. 1963 Aug;10:549–570. doi: 10.1111/j.1471-4159.1963.tb05053.x. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. MOORE J. W., COLE K. S. Resting and action potentials of the squid giant axon in vivo. J Gen Physiol. 1960 May;43:961–970. doi: 10.1085/jgp.43.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MULLINS L. J., AWAD M. Z. THE CONTROL OF THE MEMBRANE POTENTIAL OF MUSCLE FIBERS BY THE SODIUM PUMP. J Gen Physiol. 1965 May;48:761–775. doi: 10.1085/jgp.48.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McELROY W. D., COULOMBRE J. The immobilization of adenosine triphosphate in the bioluminescent reaction. J Cell Physiol. 1952 Jun;39(3):475–485. doi: 10.1002/jcp.1030390309. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES