Abstract
After injection of 45Ca++ or 89Sr++ into rats, the largest part of the radioactivity in the liver cell is associated with the subcellular structures, only negligible amounts of it being found in the soluble hyaloplasm. 50 % or more of the 45Ca++ and 89Sr++ in the liver cell is recovered in the mitochondrial fraction. The specific activity of Ca++ after injection of 45Ca++ is far greater in mitochondria than in microsomes. Pretreatment of the rats with uncouplers of oxidative phosphorylation markedly decreases the amount of radioactivity associated with the mitochondrial fraction. The amount of radioactivity recovered in the microsomes and in the final supernatant on the contrary increases. These effects are present only when mitochondrial oxidative phosphorylation is completely uncoupled. The Ca++ content of mitochondria from the livers of rats pretreated with uncouplers is sharply decreased with respect to the controls. It is concluded that in the liver cells of the intact animal energy-linked movements of Ca++ and Sr++ take place in mitochondria.
Full Text
The Full Text of this article is available as a PDF (929.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRIERLEY G. P., BACHMANN E., GREEN D. E. Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1928–1935. doi: 10.1073/pnas.48.11.1928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUFFA P., CARAFOLI E., MUSCATELLO U. MITOCHONDRIAL BIOCHEMICAL LESION AND PYROGENIC EFFECT OF PENTACHLOROPHENOL. Biochem Pharmacol. 1963 Aug;12:769–778. doi: 10.1016/0006-2952(63)90107-2. [DOI] [PubMed] [Google Scholar]
- CARAFOLI E. ACTIVE ACCUMULATION OF SR2+ BY RAT-LIVER MITOCHONDRIA. II. COMPETITION BETWEEN CA2+ AND SR2+. Biochim Biophys Acta. 1965 Jan 4;97:99–106. doi: 10.1016/0304-4165(65)90273-4. [DOI] [PubMed] [Google Scholar]
- CARAFOLI E., WEILAND S., LEHNINGER A. L. ACTIVE ACCUMULATION OF SR2+ BY RAT-LIVER MITOCHONDRIA. I. GENERAL FEATURES. Biochim Biophys Acta. 1965 Jan 4;97:88–98. doi: 10.1016/0304-4165(65)90272-2. [DOI] [PubMed] [Google Scholar]
- COSMOS E. INTRACELLULAR DISTRIBUTION OF CALCIUM IN DEVELOPING BREAST MUSCLE OF NORMAL AND DYSTROPHIC CHICKENS. J Cell Biol. 1964 Nov;23:241–252. doi: 10.1083/jcb.23.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DELUCA H. F., ENGSTROM G. W. Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1744–1750. doi: 10.1073/pnas.47.11.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAYNARD L. S., COTZIAS G. C. The partition of manganese among organs and intracellular organelles of the rat. J Biol Chem. 1955 May;214(1):489–495. [PubMed] [Google Scholar]
- ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
- VASINGTON F. D., MURPHY J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem. 1962 Aug;237:2670–2677. [PubMed] [Google Scholar]