Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Aug 1;52(2):300–325. doi: 10.1085/jgp.52.2.300

The Interaction of Polyene Antibiotics with Thin Lipid Membranes

Thomas E Andreoli 1, Marcia Monahan 1
PMCID: PMC2225804  PMID: 5672005

Abstract

Optically black, thin lipid membranes prepared from sheep erythrocyte lipids have a high dc resistance (Rm ≅ 108 ohm-cm2) when the bathing solutions contain NaCl or KCl. The ionic transference numbers (Ti) indicate that these membranes are cation-selective (T Na ≅ 0.85; T Cl ≅ 0.15). These electrical properties are independent of the cholesterol content of the lipid solutions from which the membranes are formed. Nystatin, and probably amphotericin B, are cyclic polyene antibiotics containing ≈36 ring atoms and a free amino and carboxyl group. When the lipid solutions used to form membranes contained equimolar amounts of cholesterol and phospholipid, these antibiotics reduced Rm to ≈102 ohm-cm2; concomitantly, T Cl became ≅0.92. The slope of the line relating log Rm and log antibiotic concentration was ≅4.5. Neither nystatin (2 x 10-5 M) nor amphotericin B (2 x 10-7 M) had any effect on membrane stability. The antibiotics had no effect on Rm or membrane permselectivity when the lipids used to form membranes were cholesterol-depleted. Filipin (10-5 M), an uncharged polyene with 28 ring atoms, produced striking membrane instability, but did not affect Rm or membrane ionic selectivity. These data suggest that amphotericin B or nystatin may interact with membrane-bound sterols to produce multimolecular complexes which greatly enhance the permeability of such membranes for anions (Cl-, acetate), and, to a lesser degree, cations (Na+, K+, Li+).

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Bangham J. A., Tosteson D. C. The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids. J Gen Physiol. 1967 Jul;50(6):1729–1749. doi: 10.1085/jgp.50.6.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreoli T. E., Tieffenberg M., Tosteson D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J Gen Physiol. 1967 Dec;50(11):2527–2545. doi: 10.1085/jgp.50.11.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BUTLER W. T., ALLING D. W., COTLOVE E. POTASSIUM LOSS FROM HUMAN ERYTHROCYTES EXPOSED TO AMPHOTERICIN B. Proc Soc Exp Biol Med. 1965 Jan;118:297–300. doi: 10.3181/00379727-118-29825. [DOI] [PubMed] [Google Scholar]
  4. CIRILLO V. P., HARSCH M., LAMPEN J. O. ACTION OF THE POLYENE ANTIBIOTICS FILIPIN, NYSTATIN AND N-ACETYLCANDIDIN ON THE YEAST CELL MEMBRANE. J Gen Microbiol. 1964 May;35:249–259. doi: 10.1099/00221287-35-2-249. [DOI] [PubMed] [Google Scholar]
  5. CIRILLO V. P., HARSCH M., LAMPEN J. O. ACTION OF THE POLYENE ANTIBIOTICS FILIPIN, NYSTATIN AND N-ACETYLCANDIDIN ON THE YEAST CELL MEMBRANE. J Gen Microbiol. 1964 May;35:249–259. doi: 10.1099/00221287-35-2-249. [DOI] [PubMed] [Google Scholar]
  6. Cass A., Finkelstein A. Water permeability of thin lipid membranes. J Gen Physiol. 1967 Jul;50(6):1765–1784. doi: 10.1085/jgp.50.6.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEMEL R. A., VAN DEENENL PENETRATION OF LIPID MONOLAYERS BY POLYENE ANTIBIOTICS. CORRELATION WITH SELECTIVE TOXICITY AND MODE OF ACTION. J Biol Chem. 1965 Jun;240:2749–2753. [PubMed] [Google Scholar]
  8. FEINGOLD D. S. THE ACTION OF AMPHOTERICIN B ON MYCOPLASMA LAIDLAWII. Biochem Biophys Res Commun. 1965 Apr 9;19:261–267. doi: 10.1016/0006-291x(65)90515-2. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A., Cass A. Effect of cholesterol on the water permeability of thin lipid membranes. Nature. 1967 Nov 18;216(5116):717–718. doi: 10.1038/216717a0. [DOI] [PubMed] [Google Scholar]
  10. GALE G. R. The effects of amphotericin B on yeast metabolism. J Pharmacol Exp Ther. 1960 Jul;129:257–261. [PubMed] [Google Scholar]
  11. GHOSH A., GHOSH J. J. EFFECT OF NYSTATIN AND AMPHOTERICIN B ON THE GROWTH OF CANDIDA ALBICANS. Ann Biochem Exp Med. 1963 Jan;23:29–44. [PubMed] [Google Scholar]
  12. GHOSH A., GHOSH J. J. Factors affecting the absorption of nystatin by Candida albicans. Ann Biochem Exp Med. 1963 Mar;23:101–112. [PubMed] [Google Scholar]
  13. GHOSH B. K., CHATTERJEE A. N. ACTION OF AN ANTIFUNGAL ANTIBIOTIC, NYSTATIN, ON THE PROTOZOA, LEISHMANIA DONOVANI. V: STUDIES ON THE ABSORPTION OF NYSTATIN BY L. DONOVANI. Ann Biochem Exp Med. 1963 Aug;23:309–318. [PubMed] [Google Scholar]
  14. HARSCH M., LAMPEN J. O. MODIFICATION OF K PLUS TRANSPORT IN YEAST BY THE POLYENE ANTIFUNGAL ANTIBIOTIC N-ACETYLCANDIDIN. Biochem Pharmacol. 1963 Aug;12:875–883. doi: 10.1016/0006-2952(63)90118-7. [DOI] [PubMed] [Google Scholar]
  15. HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hanai T., Haydon D. A., Taylor J. The influence of lipid composition and of some adsorbed proteins on the capacitance of black hydrocarbon membranes. J Theor Biol. 1965 Nov;9(3):422–432. doi: 10.1016/0022-5193(65)90041-x. [DOI] [PubMed] [Google Scholar]
  17. KINSKY S. C., AVRUCH J., PERMUTT M., ROGERS H. B. The lytic effect of polyene antifungal antibiotics on mammalian erythrocytes. Biochem Biophys Res Commun. 1962 Dec 19;9:503–507. doi: 10.1016/0006-291x(62)90116-x. [DOI] [PubMed] [Google Scholar]
  18. KINSKY S. C. Alterations in the permeability of Neurospora crassa due to polyene antibiotics. J Bacteriol. 1961 Dec;82:889–897. doi: 10.1128/jb.82.6.889-897.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KINSKY S. C. COMPARATIVE RESPONSES OF MAMMALIAN ERYTHROCYTES AND MICROBIAL PROTOPLASTS TO POLYENE ANTIBIOTICS AND VITAMIN A. Arch Biochem Biophys. 1963 Aug;102:180–188. doi: 10.1016/0003-9861(63)90169-3. [DOI] [PubMed] [Google Scholar]
  20. KINSKY S. C. Effect of polyene antibiotics on protoplasts of Neurospora crassa. J Bacteriol. 1962 Feb;83:351–358. doi: 10.1128/jb.83.2.351-358.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KINSKY S. C. Nystatin binding by protoplasts and a particulate fraction of Neurospora crassa, and a basis for the selective toxicity of polyene antifungal antibiotics. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1049–1056. doi: 10.1073/pnas.48.6.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. KINSKY S. C. The effect of polyene antibiotics on permeability in Neurospora crassa. Biochem Biophys Res Commun. 1961 Apr 7;4:353–357. doi: 10.1016/0006-291x(61)90217-0. [DOI] [PubMed] [Google Scholar]
  23. KOEFOED-JOHNSEN V., USSING H. H. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953 Mar 31;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x. [DOI] [PubMed] [Google Scholar]
  24. Kinsky S. C., Gronau G. R., Weber M. M. Interaction of polyene antibiotics with subcellular membrane systems. I. Mitochondria. Mol Pharmacol. 1965 Sep;1(2):190–201. [PubMed] [Google Scholar]
  25. Kinsky S. C., Luse S. A., Zopf D., van Deenen L. L., Haxby J. Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: electron microscopic observations. Biochim Biophys Acta. 1967;135(5):844–861. doi: 10.1016/0005-2736(67)90055-7. [DOI] [PubMed] [Google Scholar]
  26. Kinsky S. C., Luse S. A., van Deenen L. L. Interaction of polyene antibiotics with natural and artificial membrane systems. Fed Proc. 1966 Sep-Oct;25(5):1503–1510. [PubMed] [Google Scholar]
  27. LAMPEN J. O., ARNOW P. M., BOROWSKA Z., LASKIN A. I. Location and role of sterol at nystatin-binding sites. J Bacteriol. 1962 Dec;84:1152–1160. doi: 10.1128/jb.84.6.1152-1160.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LAMPEN J. O., ARNOW P. M., SAFFERMAN R. S. Mechanism of protection by sterols against polyene antibiotics. J Bacteriol. 1960 Aug;80:200–206. doi: 10.1128/jb.80.2.200-206.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LAMPEN J. O., ARNOW P. Significance of nystatin uptake for its antifungal action. Proc Soc Exp Biol Med. 1959 Aug-Sep;101:792–797. doi: 10.3181/00379727-101-25098. [DOI] [PubMed] [Google Scholar]
  30. LAMPEN J. O., MORGAN E. R., SLOCUM A., ARNOW P. Absorption of nystatin by microorganisms. J Bacteriol. 1959 Aug;78:282–289. doi: 10.1128/jb.78.2.282-289.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LICHTENSTEIN N. S., LEAF A. EFFECT OF AMPHOTERICIN B ON THE PERMEABILITY OF THE TOAD BLADDER. J Clin Invest. 1965 Aug;44:1328–1342. doi: 10.1172/JCI105238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morton B. E., Lardy H. A. Cellular oxidative phosphorylation. 3. Measurement in chemically modified cells. Biochemistry. 1967 Jan;6(1):57–61. doi: 10.1021/bi00853a011. [DOI] [PubMed] [Google Scholar]
  33. Mueller P., Rudin D. O. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun. 1967 Feb 21;26(4):398–404. doi: 10.1016/0006-291x(67)90559-1. [DOI] [PubMed] [Google Scholar]
  34. SHOCKMAN G. D., LAMPEN J. O. Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J Bacteriol. 1962 Sep;84:508–512. doi: 10.1128/jb.84.3.508-512.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. UTZ J. P., TREGER A. The current status of chemotherapy of systemic fungal disease. Ann Intern Med. 1959 Dec;51:1220–1229. doi: 10.7326/0003-4819-51-6-1220. [DOI] [PubMed] [Google Scholar]
  36. WEBER M. M., KINSKY S. C. EFFECT OF CHOLESTEROL ON THE SENSITIVITY OF MYCOPLASMA LAIDLAWII TO THE POLYENE ANTIBIOTIC FILIPIN. J Bacteriol. 1965 Feb;89:306–312. doi: 10.1128/jb.89.2.306-312.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weissmann G., Sessa G. The action of polyene antibiotics on phospholipid-cholesterol structures. J Biol Chem. 1967 Feb 25;242(4):616–625. [PubMed] [Google Scholar]
  38. de GIER, VAN DEENEN L. Some lipid characteristics of red cell membranes of various animal species. Biochim Biophys Acta. 1961 May 13;49:286–296. doi: 10.1016/0006-3002(61)90128-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES