Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Aug 1;52(2):240–257. doi: 10.1085/jgp.52.2.240

Sodium Movements in Perfused Squid Giant Axons

Passive fluxes

Eduardo Rojas 1, Mitzy Canessa-Fischer 1
PMCID: PMC2225808  PMID: 5672003

Abstract

Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm2sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm2sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 ± 3 pmoles/cm2sec and 41 ± 10 pmoles/cm2sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm2impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, Dyron F. M., Senft J. P. Internally perfused axons: effects of two different anions on ionic conductance. Science. 1966 Mar 18;151(3716):1392–1394. doi: 10.1126/science.151.3716.1392. [DOI] [PubMed] [Google Scholar]
  2. Adelman W. J., Jr, Senft J. P. Effects of internal sodium on ionic conductance of internally perfused axons. Nature. 1966 Nov 5;212(5062):614–616. doi: 10.1038/212614a0. [DOI] [PubMed] [Google Scholar]
  3. CALDWELL P. C., HODGKIN A. L., KEYNES R. D., SHAW T. L. The effects of injecting 'energy-rich' phosphate compounds on the active transport of ions in the giant axons of Loligo. J Physiol. 1960 Jul;152:561–590. doi: 10.1113/jphysiol.1960.sp006509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Canessa-Fischer M., Zambrano F., Rojas E. The loss and recovery of the sodium pump in perfused giant axons. J Gen Physiol. 1968 May 1;51(5):162–171. [PMC free article] [PubMed] [Google Scholar]
  5. Chandler W. K., Hodgkin A. L. The effect of internal sodium on the action potential in the presence of different internal anions. J Physiol. 1965 Dec;181(3):594–611. doi: 10.1113/jphysiol.1965.sp007785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KEYNES R. D., LEWIS P. R. The sodium and potassium content of cephalopod nerve fibers. J Physiol. 1951 Jun;114(1-2):151–182. doi: 10.1113/jphysiol.1951.sp004609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KEYNES R. D. The ionic movements during nervous activity. J Physiol. 1951 Jun;114(1-2):119–150. doi: 10.1113/jphysiol.1951.sp004608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Luxoro M., Yañez E. Permeability of the Giant Axon of Dosidicus gigas to Calcium Ions. J Gen Physiol. 1968 May 1;51(5):115–122. [PMC free article] [PubMed] [Google Scholar]
  11. OIKAWA T., SPYROPOULOS C. S., TASAKI I., TEORELL T. Methods for perfusing the giant axon of Loligo pealii. Acta Physiol Scand. 1961 Jun;52:195–196. doi: 10.1111/j.1748-1716.1961.tb02218.x. [DOI] [PubMed] [Google Scholar]
  12. Opit L. J., Potter H., Charnock J. S. The effect of anions on (Na+ + K+)-activated ATPase. Biochim Biophys Acta. 1966 May 12;120(1):159–161. doi: 10.1016/0926-6585(66)90288-3. [DOI] [PubMed] [Google Scholar]
  13. Rojas E., Atwater I. Effect of tetrodotoxin on the early outward currents in perfused giant axons. Proc Natl Acad Sci U S A. 1967 May;57(5):1350–1355. doi: 10.1073/pnas.57.5.1350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SHANES A. M., BERMAN M. D. Kinetics of ion movement in the squid giant axon. J Gen Physiol. 1955 Nov 20;39(2):279–300. doi: 10.1085/jgp.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shaw T. I. Cation movements in perfused giant axons. J Physiol. 1966 Jan;182(1):209–216. doi: 10.1113/jphysiol.1966.sp007819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TASAKI I. Permeability of squid axon membrane to various ions. J Gen Physiol. 1963 Mar;46:755–772. doi: 10.1085/jgp.46.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TASAKI I., TAKENAKA T. RESTING AND ACTION POTENTIAL OF SQUID GIANT AXONS INTRACELLULARLY PERFUSED WITH SODIUM-RICH SOLUTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:619–626. doi: 10.1073/pnas.50.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tasaki I., Singer I., Takenaka T. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J Gen Physiol. 1965 Jul;48(6):1095–1123. doi: 10.1085/jgp.48.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES