Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Sep 1;52(3):532–549. doi: 10.1085/jgp.52.3.532

The Effect of Calcium Depletion upon the Tension-Independent Component of Cardiac Heat Production

C L Gibbs 1, P Vaughan 1
PMCID: PMC2225814  PMID: 4970572

Abstract

Rabbit papillary muscle has been exposed to calcium concentrations ranging from 2.5 mM to zero. Its mechanical and electrical activity has been monitored and its heat production measured using a myothermic technique. Calcium depletion decreased the magnitude of the tension-independent heat per contraction from a mean of 0.45 mcal/g muscle to 0.31 mcal/g muscle at room temperature (18° to 22°C). Calcium-chelating agents did not abolish action potential conduction under the experimental conditions used but they further reduced the magnitude of the tension-independent heat. Raising the temperature from room level to 32°C decreased the tension-independent heat from a mean of 0.52 to a mean of 0.24 mcal/g muscle. Calcium depletion at 32°C further decreased this heat and it was calculated that the energy now liberated in activating the muscle was about 2% of the total energy normally liberated in the working heart. The results are interpreted in terms of current biochemical and myothermic data.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARLSON F. D., HARDY D. J., WILKIE D. R. Total energy production and phosphocreatine hydrolysis in the isotonic twitch. J Gen Physiol. 1963 May;46:851–882. doi: 10.1085/jgp.46.5.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARLSON F. D., SIGER A. The mechanochemistry of muscular contraction. I. The isometric twitch. J Gen Physiol. 1960 Sep;44:33–60. doi: 10.1085/jgp.44.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIES R. E. A MOLECULAR THEORY OF MUSCLE CONTRACTION: CALCIUM-DEPENDENT CONTRACTIONS WITH HYDROGEN BOND FORMATION PLUS ATP-DEPENDENT EXTENSIONS OF PART OF THE MYOSIN-ACTIN CROSS-BRIDGES. Nature. 1963 Sep 14;199:1068–1074. doi: 10.1038/1991068a0. [DOI] [PubMed] [Google Scholar]
  4. Davies R. E., Kushmerick M. J., Larson R. E. ATP, activation, and the heat of shortening of muscle. Nature. 1967 Apr 8;214(5084):148–151. doi: 10.1038/214148a0. [DOI] [PubMed] [Google Scholar]
  5. EDMAN K. A., GRIEVE D. W. ON THE ROLE OF CALCIUM IN THE EXCITATION-CONTRACTION PROCESS OF FROG SARTORIUS MUSCLE. J Physiol. 1964 Jan;170:138–152. doi: 10.1113/jphysiol.1964.sp007319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GIBBS C. L. THE EFFECTS OF CALCIUM DEPLETION OF CARDIAC MUSCLE UPON THE RELATION BETWEEN STIMULUS PATTERN AND ACTION POTENTIAL, ANALYSED IN TERMS OF A MATHEMATICAL MODEL. Aust J Exp Biol Med Sci. 1964 Feb;42:116–132. doi: 10.1038/icb.1964.14. [DOI] [PubMed] [Google Scholar]
  7. Gay W. A., Jr, Johnson E. A. An anatomical evaluation of the myocardial length-tension diagram. Circ Res. 1967 Jul;21(1):33–43. doi: 10.1161/01.res.21.1.33. [DOI] [PubMed] [Google Scholar]
  8. Gibbs C. L., Ricchiuti N. V., Mommaerts W. F. Activation heat in frog sartorius muscle. J Gen Physiol. 1966 Jan;49(3):517–535. doi: 10.1085/jgp.49.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HASSELBACH W. ATP-DRIVEN ACTIVE TRANSPORT OF CALCIUM IN THE MEMBRANES OF THE SARCOPLASMIC RETICULUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:501–504. doi: 10.1098/rspb.1964.0064. [DOI] [PubMed] [Google Scholar]
  10. HASSELBACH W., MAKINOSE M. [The calcium pump of the "relaxing granules" of muscle and its dependence on ATP-splitting]. Biochem Z. 1961;333:518–528. [PubMed] [Google Scholar]
  11. HILL A. V. THE EFFECT OF LOAD ON THE HEAT OF SHORTENING OF MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:297–318. doi: 10.1098/rspb.1964.0004. [DOI] [PubMed] [Google Scholar]
  12. HILL A. V. The heat of activation and the heat of shortening in a muscle twitch. Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195–211. doi: 10.1098/rspb.1949.0019. [DOI] [PubMed] [Google Scholar]
  13. HOFFMAN B. F., SUCKLING E. E. Effect of several cations on transmembrane potentials of cardiac muscle. Am J Physiol. 1956 Aug;186(2):317–324. doi: 10.1152/ajplegacy.1956.186.2.317. [DOI] [PubMed] [Google Scholar]
  14. HOWARTH J. V. The behaviour of frog muscle in hypertonic solutions. J Physiol. 1958 Nov 10;144(1):167–175. doi: 10.1113/jphysiol.1958.sp006093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. JENDEN D. J., REGER J. F. THE ROLE OF RESTING POTENTIAL CHANGES IN THE CONTRACTILE FAILURE OF FROG SARTORIUS MUSCLES DURING CALCIUM DEPRIVATION. J Physiol. 1963 Dec;169:889–901. doi: 10.1113/jphysiol.1963.sp007302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KOHN R. M. Myocardial oxygen uptake during ventricular fibrillation and electromechanical dissociation. Am J Cardiol. 1963 Apr;11:483–486. doi: 10.1016/0002-9149(63)90008-0. [DOI] [PubMed] [Google Scholar]
  17. Klocke F. J., Braunwald E., Ross J., Jr Oxygen cost of electrical activation of the heart. Circ Res. 1966 Apr;18(4):357–365. doi: 10.1161/01.res.18.4.357. [DOI] [PubMed] [Google Scholar]
  18. LANGER G. A. CALCIUM EXCHANGE IN DOG VENTRICULAR MUSCLE: RELATION TO FREQUENCY OF CONTRACTION AND MAINTENANCE OF CONTRACTILITY. Circ Res. 1965 Jul;17:78–89. doi: 10.1161/01.res.17.1.78. [DOI] [PubMed] [Google Scholar]
  19. LORBER V. Energy metabolism of the completely isolated mammalian heart in failure. Circ Res. 1953 Jul;1(4):298–311. doi: 10.1161/01.res.1.4.298. [DOI] [PubMed] [Google Scholar]
  20. Lahrtz H. G., Lüllmann H., van Zwieten P. A. Calcium transport in isolated guinea-pig atria during metabolic inhibition. Biochim Biophys Acta. 1967 Sep 9;135(4):701–709. doi: 10.1016/0005-2736(67)90100-9. [DOI] [PubMed] [Google Scholar]
  21. Langer G. A. Sodium exchange in dog ventricular muscle. Relation to frequency of contraction and its possible role in the control of myocardial contractility. J Gen Physiol. 1967 May;50(5):1221–1239. doi: 10.1085/jgp.50.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee Y. C., Richman H. G., Visscher M. B. Extracellular calcium ion activity and reversible cardiac arrest. Am J Physiol. 1966 Mar;210(3):493–498. doi: 10.1152/ajplegacy.1966.210.3.493. [DOI] [PubMed] [Google Scholar]
  23. McKEEVER W. P., GREGG D. E., CANNEY P. C. Oxygen uptake of the nonworking left ventricle. Circ Res. 1958 Sep;6(5):612–623. doi: 10.1161/01.res.6.5.612. [DOI] [PubMed] [Google Scholar]
  24. Mommaerts W. F., Wallner A. The break-down of adenosine triphosphate in the contraction cycle of the frog sartorius muscle. J Physiol. 1967 Nov;193(2):343–357. doi: 10.1113/jphysiol.1967.sp008361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pool P. E., Sonnenblick E. H. The mechanochemistry of cardiac muscle. I. The isometric contraction. J Gen Physiol. 1967 Mar;50(4):951–965. doi: 10.1085/jgp.50.4.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RODBARD S., WILLIAMS F., WILLIAMS C. The spherical dynamics of the heart (myocardial tension, oxygen consumption, coronary blood flow and efficiency). Am Heart J. 1959 Mar;57(3):348–360. doi: 10.1016/0002-8703(59)90316-3. [DOI] [PubMed] [Google Scholar]
  27. Ridgway E. B., Ashley C. C. Calcium transients in single muscle fibers. Biochem Biophys Res Commun. 1967 Oct 26;29(2):229–234. doi: 10.1016/0006-291x(67)90592-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES