Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Sep 1;52(3):424–443. doi: 10.1085/jgp.52.3.424

Net Uptake of Potassium in Neurospora Exchange for sodium and hydrogen ions

Clifford L Slayman 1, Carolyn W Slayman 1
PMCID: PMC2225824  PMID: 5673302

Abstract

Net uptake of potassium by low K, high Na cells of Neurospora at pH 5.8 is accompanied by net extrusion of sodium and hydrogen ions. The amount of potassium taken up by the cells is matched by the sum of sodium and hydrogen ions lost, under a variety of conditions: prolonged preincubation, partial respiratory inhibition (DNP), and lowered [K]o. All three fluxes are exponential with time and obey Michaelis kinetics as functions of [K]o. The V max for net potassium uptake, 22.7 mmoles/kg cell water/min, is very close to that for K/K exchange reported previously (20 mmoles/kg cell water/min). However, the apparent Km for net potassium uptake, 11.8 mM [K]o, is an order of magnitude larger than the value (1 mM) for K/K exchange. It is suggested that a single transport system handles both net K uptake and K/K exchange, but that the affinity of the external site for potassium is influenced by the species of ion being extruded.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong W. M., Rothstein A. Discrimination between alkali metal cations by yeast. II. Cation interactions in transport. J Gen Physiol. 1967 Mar;50(4):967–988. doi: 10.1085/jgp.50.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CONWAY E. J., BRADY T. G. Biological production of acid and alkali; quantitative relations of succinic and carbonic acids to the potassium and hydrogen ion exchange in fermenting yeast. Biochem J. 1950 Sep;47(3):360–369. doi: 10.1042/bj0470360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CONWAY E. J., DOWNEY M. pH values of the yeast cell. Biochem J. 1950 Sep;47(3):355–360. doi: 10.1042/bj0470355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CONWAY E. J., MOORE P. T. A sodium-yeast and some of its properties. Biochem J. 1954 Jul;57(3):523–528. doi: 10.1042/bj0570523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conway E. J., O'malley E. The nature of the cation exchanges during yeast fermentation, with formation of 0.02n-H ion. Biochem J. 1946;40(1):59–67. [PMC free article] [PubMed] [Google Scholar]
  6. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  7. Epstein W., Schultz S. G. Cation transport in Escherichia coli. VI. K exchange. J Gen Physiol. 1966 Jan;49(3):469–481. doi: 10.1085/jgp.49.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
  9. HAROLD F. M. Binding of inorganic polyphosphate to the cell wall of Neurospora crassa. Biochim Biophys Acta. 1962 Feb 12;57:59–66. doi: 10.1016/0006-3002(62)91077-6. [DOI] [PubMed] [Google Scholar]
  10. HAROLD F. M. Depletion and replenishment of the inorganic polyphosphate pool in Neurospora crassa. J Bacteriol. 1962 May;83:1047–1057. doi: 10.1128/jb.83.5.1047-1057.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JACKSON P. C., ADAMS H. R. Cation-anion balance during potassium and sodium absorption by barley roots. J Gen Physiol. 1963 Jan;46:369–386. doi: 10.1085/jgp.46.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KOTYK A. Uptake of 2,4-dinitrophenol by the yeast cell. Folia Microbiol (Praha) 1962 Mar;7:109–114. doi: 10.1007/BF02927233. [DOI] [PubMed] [Google Scholar]
  13. Neal A. L., Weinstock J. O., Lampen J. O. Mechanisms of Fatty Acid Toxicity for Yeast. J Bacteriol. 1965 Jul;90(1):126–131. doi: 10.1128/jb.90.1.126-131.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ogata E., Rasmussen H. Valinomycin and mitochondrial ion transport. Biochemistry. 1966 Jan;5(1):57–66. doi: 10.1021/bi00865a009. [DOI] [PubMed] [Google Scholar]
  15. Raven J. A. Ion transport in Hydrodictyon africanum. J Gen Physiol. 1967 Jul;50(6):1607–1625. doi: 10.1085/jgp.50.6.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SCHULTZ S. G., EPSTEIN W., GOLDSTEIN D. A. Cation transport in Escherichia coli. III. Potassium fluxes in the steadystate. J Gen Physiol. 1962 Nov;46:343–353. doi: 10.1085/jgp.46.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SCHULTZ S. G., EPSTEIN W., SOLOMON A. K. CATION TRANSPORT IN ESCHERICHIA COLI. IV. KINETICS OF NET K UPTAKE. J Gen Physiol. 1963 Nov;47:329–346. doi: 10.1085/jgp.47.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SLAYMAN C. W., TATUM E. L. POTASSIUM TRANSPORT IN NEUROSPORA. I. INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS, AND CATION REQUIREMENTS FOR GROWTH. Biochim Biophys Acta. 1964 Nov 29;88:578–592. [PubMed] [Google Scholar]
  19. Slayman C. L. Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. J Gen Physiol. 1965 Sep;49(1):69–92. doi: 10.1085/jgp.49.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Slayman C. L. Electrical properties of Neurospora crassa. Respiration and the intracellular potential. J Gen Physiol. 1965 Sep;49(1):93–116. doi: 10.1085/jgp.49.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Slayman C. W., Tatum E. L. Potassium transport in neurospora. II. Measurement of steady-state potassium fluxes. Biochim Biophys Acta. 1965 May 25;102(1):149–160. [PubMed] [Google Scholar]
  22. THAYER P. S., HOROWITZ N. H. The L-amino acid oxidase of Neurospora. J Biol Chem. 1951 Oct;192(2):755–767. [PubMed] [Google Scholar]
  23. Trevithick J. R., Metzenberg R. L. Genetic alteration of pore size and other properties of the Neurospora cell wall. J Bacteriol. 1966 Oct;92(4):1016–1020. doi: 10.1128/jb.92.4.1016-1020.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yayashi M., Uchida R. A cation activated adenosinetriphosphatase in cell membranes of halophilic Vibrio parahaemolyticus. Biochim Biophys Acta. 1965 Oct 25;110(1):207–209. doi: 10.1016/s0926-6593(65)80113-8. [DOI] [PubMed] [Google Scholar]
  26. Zarlengo M. H., Schultz S. G. Cation transport and metabolism in Streptococcus fecalis. Biochim Biophys Acta. 1966 Oct 10;126(2):308–320. doi: 10.1016/0926-6585(66)90068-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES