Abstract
Embryonic chick heart cells were cultured on a plastic surface in sparse sheets of 2–50 cells mutually in contact, or isolated as single cells. Conditions are described which permitted conjoint cells to be impaled with recording microelectrodes with 75 % success, and isolated single cells with 8 % success. It is proposed that cells in electrical contact with neighbors are protected from irreversible damage by the penetrating electrode, by a flow of ions or other substances from connected cells across low-impedance intercellular junctions. Action potentials recorded from conjoint and isolated single cells were similar in form and amplitude. The height or shape of the action potential thus appears not to depend upon spatial relationships of one cell to another. As the external potassium concentration was increased from 1.3 mM to 6 mM, cells became hyperpolarized while the afterhyperpolarization was reduced. At higher potassium levels, the afterhyperpolarization disappeared, the slope of the slow diastolic depolarization decreased, and resting potential fell along a linear curve with a slope of 61 mv per 10-fold increase in potassium. In pacemaker cells the diastolic depolarization consists of two phases: (a) recovery from the afterpotential of the previous action potential and (b) the pacemaker potential. These phases are separated by a point of inflection, and represent manifestations of different mechanisms. Evidence is presented that it is the point of inflection (PBA) rather than the point of maximal diastolic potential, that should be taken as the resting potential.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANTONI H., HERKEL K., FLECKENSTEIN A. DIE RESTITUTION DER AUTOMATISCHEN ERREGUNGSBILDUNG IN KALIUM-GELAEHMTEN SCHRITTMACHER-GEWEBEN DURCH ADRENALIN. ELEKTROPHYSIOLOGISCHE STUDIEN AM ISOLIERTEN SINUSKNOTEN (MEERSCHWEINCHEN, RHESUSAFFE) SOWIE AM PURKINJE-FADEN (RHESUSAFFE) Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;277:633–649. [PubMed] [Google Scholar]
- BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURROWS R., LAMB J. F. Sodium and potassium fluxes in cells cultured from chick embryo heart muscle. J Physiol. 1962 Aug;162:510–531. doi: 10.1113/jphysiol.1962.sp006947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARMELIET E. E. INFLUENCE OF LITHIUM IONS ON THE TRANSMEMBRANE POTENTIAL AND CATION CONTENT OF CARDIAC CELLS. J Gen Physiol. 1964 Jan;47:501–530. doi: 10.1085/jgp.47.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CEDERGREN B., HARARY I. IN VITRO STUDIES ON SINGLE BEATING RAT HEART CELLS. VII. ULTRASTRUCTURE OF THE BEATING CELL LAYER. J Ultrastruct Res. 1964 Dec;11:443–454. doi: 10.1016/s0022-5320(64)80075-7. [DOI] [PubMed] [Google Scholar]
- CRILL W. E., RUMERY R. E., WOODBURY J. W. Effects of membrane current on transmembrane potentials of cultured chick embryo heart cells. Am J Physiol. 1959 Oct;197:733–735. doi: 10.1152/ajplegacy.1959.197.4.733. [DOI] [PubMed] [Google Scholar]
- DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUDEL J., TRAUTWEIN W. Der Mechanismus der automatischen rhythmischen Impulsbildung der Herzmuskelfaser. Pflugers Arch. 1958;267(6):553–565. doi: 10.1007/BF00362959. [DOI] [PubMed] [Google Scholar]
- DeHann R. L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev Biol. 1967 Sep;16(3):216–249. doi: 10.1016/0012-1606(67)90025-5. [DOI] [PubMed] [Google Scholar]
- FANGE R., PERSSON H., THESLEFF S. Electrophysiologic and pharmacological observations on trypsin-disintegrated embryonic chick hearts cultured in vitro. Acta Physiol Scand. 1956 Dec 31;38(2):173–183. doi: 10.1111/j.1748-1716.1957.tb01381.x. [DOI] [PubMed] [Google Scholar]
- GREINER T. H., GARB S. The influence of drugs on the irritability and automaticity of heart muscle. J Pharmacol Exp Ther. 1950 Mar;98(3):215–223. [PubMed] [Google Scholar]
- HALL A. E., HUTTER O. F., NOBLE D. Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J Physiol. 1963 Apr;166:225–240. doi: 10.1113/jphysiol.1963.sp007102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARSCH M., GREEN J. W. ELECTROLYTE ANALYSES OF CHICK EMBRYONIC FLUIDS AND HEART TISSUES. J Cell Physiol. 1963 Dec;62:319–326. doi: 10.1002/jcp.1030620312. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLTZMAN D., AGIN D. EFFECT OF TRYPSIN ON RESTING POTENTIAL OF FROG MUSCLE. Nature. 1965 Feb 27;205:911–912. doi: 10.1038/205911a0. [DOI] [PubMed] [Google Scholar]
- Kanno T., Matsuda K. The effects of external sodium and potassium concentration on the membrane potential of atrioventricular fibers of the toad. J Gen Physiol. 1966 Nov;50(2):243–253. doi: 10.1085/jgp.50.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levinson C., Green J. W. Cellular injury resulting from tissue disaggregation. Exp Cell Res. 1965 Sep;39(2):309–317. doi: 10.1016/0014-4827(65)90036-4. [DOI] [PubMed] [Google Scholar]
- Mark G. E., Strasser F. F. Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp Cell Res. 1966 Nov-Dec;44(2):217–233. doi: 10.1016/0014-4827(66)90427-7. [DOI] [PubMed] [Google Scholar]
- McAllister R. E., Noble D. The effect of subthreshold potentials on the membrane current in cardiac Purkinje fibres. J Physiol. 1967 May;190(2):381–387. doi: 10.1113/jphysiol.1967.sp008216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister R. E., Noble D. The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J Physiol. 1966 Oct;186(3):632–662. doi: 10.1113/jphysiol.1966.sp008060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOBLE D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol. 1962 Feb;160:317–352. doi: 10.1113/jphysiol.1962.sp006849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble D. Applications of Hodgkin-Huxley equations to excitable tissues. Physiol Rev. 1966 Jan;46(1):1–50. doi: 10.1152/physrev.1966.46.1.1. [DOI] [PubMed] [Google Scholar]
- Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pillat B. Prolongation of the relative refractory period by drugs acting like quinidine; occurrence of propagated spikes in cardiac muscle. Helv Physiol Pharmacol Acta. 1967;25(1):32–39. [PubMed] [Google Scholar]
- Potter D. D., Furshpan E. J., Lennox E. S. Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci U S A. 1966 Feb;55(2):328–336. doi: 10.1073/pnas.55.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROJAS E. MEMBRANE POTENTIALS, RESISTANCE, AND ION PERMEABILITY IN SQUID GIANT AXONS INJECTED OR PERFUSED WITH PROTEASES. Proc Natl Acad Sci U S A. 1965 Feb;53:306–311. doi: 10.1073/pnas.53.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita T., Kaneko A. An intracellular coaxial microelectrode--its construction and application. Med Electron Biol Eng. 1965 Oct;3(4):367–376. doi: 10.1007/BF02476131. [DOI] [PubMed] [Google Scholar]
- VASSALLE M. CARDIAC PACEMAKER POTENTIALS AT DIFFERENT EXTRA-AND INTRACELLULAR K CONCENTRATIONS. Am J Physiol. 1965 Apr;208:770–775. doi: 10.1152/ajplegacy.1965.208.4.770. [DOI] [PubMed] [Google Scholar]
- de MELLO W., HOFFMAN B. F. Potassium ions and electrical activity of specialized cardiac fibers. Am J Physiol. 1960 Dec;199:1125–1130. doi: 10.1152/ajplegacy.1960.199.6.1125. [DOI] [PubMed] [Google Scholar]