Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Oct 1;52(4):666–681. doi: 10.1085/jgp.52.4.666

The Ionic Basis of Electrical Activity in Embryonic Cardiac Muscle

Billy K Yeh 1, Brian F Hoffman 1
PMCID: PMC2225836  PMID: 5693167

Abstract

The intracellular sodium concentration reported for young, embryonic chick hearts is extremely high and decreases progressively throughout the embryonic period, reaching a value of 43 mM immediately before hatching. This observation suggested that the ionic basis for excitation in embryonic chick heart may differ from that responsible for electrical activity of the adult organ. This hypothesis was tested by recording transmembrane resting and action potentials on hearts isolated from 6-day and 19-day chick embryos and varying the extracellular sodium and potassium concentrations. The results show that for both young and old embryonic cardiac cells the resting potential depends primarily on the extracellular potassium concentration and the amplitude and rate of rise of the action potential depend primarily on the extracellular sodium concentration.

Full Text

The Full Text of this article is available as a PDF (1,015.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW J. S., MANERY J. F. The changes in electrolytes, particularly chloride, which accompany growth in chick muscle. J Cell Physiol. 1954 Apr;43(2):165–191. doi: 10.1002/jcp.1030430204. [DOI] [PubMed] [Google Scholar]
  2. Bigger J. T., Jr, Bassett A. L., Hoffman B. F. Electrophysiological effects of diphenylhydantoin on canine purkinje fibers. Circ Res. 1968 Feb;22(2):221–236. doi: 10.1161/01.res.22.2.221. [DOI] [PubMed] [Google Scholar]
  3. Brady A. J., Tan S. T. The ionic dependence of cardiac excitability and contractility. J Gen Physiol. 1966 Mar;49(4):781–791. doi: 10.1085/jgp.49.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brady A. J., Woodbury J. W. The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J Physiol. 1960 Dec;154(2):385–407. doi: 10.1113/jphysiol.1960.sp006586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FANGE R., PERSSON H., THESLEFF S. Electrophysiologic and pharmacological observations on trypsin-disintegrated embryonic chick hearts cultured in vitro. Acta Physiol Scand. 1956 Dec 31;38(2):173–183. doi: 10.1111/j.1748-1716.1957.tb01381.x. [DOI] [PubMed] [Google Scholar]
  6. FINGL E., WOODBURY L. A., HECHT H. H. Effects of innervation and drugs upon direct membrane potentials of embryonic chick myocardium. J Pharmacol Exp Ther. 1952 Jan;104(1):103–114. [PubMed] [Google Scholar]
  7. Hagiwara S., Nakajima S. Tetrodotoxin and manganese ion: effects on action potential of the frog heart. Science. 1965 Sep 10;149(3689):1254–1255. doi: 10.1126/science.149.3689.1254. [DOI] [PubMed] [Google Scholar]
  8. KLEIN R. L. HIGH NA CONTENT OF EARLY EMBRYONIC CHICK HEART. Am J Physiol. 1963 Aug;205:370–374. doi: 10.1152/ajplegacy.1963.205.2.370. [DOI] [PubMed] [Google Scholar]
  9. KLEIN R. L. Ontogenesis of K and Na fluxes in embryonic chick heart. Am J Physiol. 1960 Oct;199:613–618. doi: 10.1152/ajplegacy.1960.199.4.613. [DOI] [PubMed] [Google Scholar]
  10. Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
  11. McCANCE R. A., WIDDOWSON E. M. The chemical structure of the body. Q J Exp Physiol Cogn Med Sci. 1956 Jan;41(1):1–17. doi: 10.1113/expphysiol.1956.sp001151. [DOI] [PubMed] [Google Scholar]
  12. SMOCZKIEWICZOWA A. Sodium, potassium, calcium and chloride ion contents and protein fractions in the fluids of chick embryos. Nature. 1959 May 2;183(4670):1260–1261. doi: 10.1038/1831260a0. [DOI] [PubMed] [Google Scholar]
  13. Seyama I., Irisawa H. The effect of high sodium concentration on the action potential of the skate heart. J Gen Physiol. 1967 Jan;50(3):505–517. doi: 10.1085/jgp.50.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. VERNADAKIS A., WOODBURY D. M. ELECTROLYTE AND NITROGEN CHANGES IN SKELETAL MUSCLE OF DEVELOPING RATS. Am J Physiol. 1964 Jun;206:1365–1368. doi: 10.1152/ajplegacy.1964.206.6.1365. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES