Abstract
Evidence is presented that caffeine does not act on the mitochondrial Ca uptake system and that its effect cannot be attributed to the accumulation of adenosine 3',5'-phosphate. Two distinct caffeine effects are described. At high ATP concentrations caffeine decreases the coupling between ATP hydrolysis and Ca inflow. It either inhibits inflow without any inhibition of the rate of ATP hydrolysis, or it stimulates the ATPase activity without stimulating Ca inflow. These high ATP concentrations (much higher than needed for the saturation of the transport ATPase) greatly reduce the control of the turnover rate of the transport system, by accumulated Ca. At low ATP concentrations when the transport system is under maximal control by accumulated Ca, caffeine inhibits the ATPase activity without affecting the rate of Ca inflow.
Full Text
The Full Text of this article is available as a PDF (791.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRIERLEY G., MURER E., BACHMANN E., GREEN D. E. STUDIES ON ION TRANSPORT. II. THE ACCUMULATION OF INORGANIC PHOSPHATE AND MAGNESIUM IONS BY HEART MITOCHONDRIA. J Biol Chem. 1963 Oct;238:3482–3489. [PubMed] [Google Scholar]
- Carvalho A. P., Leo B. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. J Gen Physiol. 1967 May;50(5):1327–1352. doi: 10.1085/jgp.50.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DELUCA H. F., ENGSTROM G. W. Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1744–1750. doi: 10.1073/pnas.47.11.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggleton P., Elsden S. R., Gough N. The estimation of creatine and of diacetyl. Biochem J. 1943;37(5):526–529. doi: 10.1042/bj0370526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HASSELBACH W., WEBER A. Models for the study of the contraction of muscle and of cell protoplasm. Pharmacol Rev. 1955 Mar;7(1):97–117. [PubMed] [Google Scholar]
- LEHNINGER A. L., ROSSI C. S., GREENAWALT J. W. Respiration-dependent accumulation of inorganic phosphate and Ca ions by rat liver mitochondria. Biochem Biophys Res Commun. 1963 Mar 25;10:444–448. doi: 10.1016/0006-291x(63)90377-2. [DOI] [PubMed] [Google Scholar]
- SUTHERLAND E. W., RALL T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem. 1958 Jun;232(2):1077–1091. [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- VASINGTON F. D., MURPHY J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem. 1962 Aug;237:2670–2677. [PubMed] [Google Scholar]
- WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]
- Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]