Abstract
At concentrations between 1 to 10 mM, caffeine reduced the Ca-accumulating capacity of fragmented reticulum obtained from frog and rabbit muscle. With 8 mM caffeine enough Ca was released from frog reticulum to account for the force of the contracture. Caffeine did not affect all reticulum membranes equally. The fraction which was spun down at 2000 g was more sensitive than the lighter fractions. The percentage of the total accumulated Ca released by caffeine decreased with decreasing Ca content of the reticulum. In parallel with their known effects on the caffeine contracture, a drop in temperature increased the caffeine-induced Ca release while procaine inhibited it. Caffeine also inhibited the rate of Ca uptake, which may in part account for the prolongation of the active state caused by caffeine.
Full Text
The Full Text of this article is available as a PDF (601.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AXELSSON J., THESLEFF S. Activation of the contractile mechanism in striated muscle. Acta Physiol Scand. 1958 Oct 28;44(1):55–66. doi: 10.1111/j.1748-1716.1958.tb01608.x. [DOI] [PubMed] [Google Scholar]
- BIANCHI C. P. Kinetics of radiocaffeine uptake and release in frog sartorius. J Pharmacol Exp Ther. 1962 Oct;138:41–47. [PubMed] [Google Scholar]
- CALDWELL P. C. CALCIUM AND THE CONTRACTION OF MAIA MUSCLE FIBRES. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:512–516. doi: 10.1098/rspb.1964.0066. [DOI] [PubMed] [Google Scholar]
- CARSTEN M. E., MOMMAERTS W. F. THE ACCUMULATION OF CALCIUM IONS BY SARCOTUBULAR VESICLES. J Gen Physiol. 1964 Nov;48:183–197. doi: 10.1085/jgp.48.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carvalho A. P., Leo B. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. J Gen Physiol. 1967 May;50(5):1327–1352. doi: 10.1085/jgp.50.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FILO R. S., BOHR D. F., RUEGG J. C. GLYCERINATED SKELETAL AND SMOOTH MUSCLE: CALCIUM AND MAGNESIUM DEPENDENCE. Science. 1965 Mar 26;147(3665):1581–1583. doi: 10.1126/science.147.3665.1581. [DOI] [PubMed] [Google Scholar]
- FRANK G. B. Effects of changes in extracellular calcium concentration on the potassium-induced contracture of frog's skeletal muscle. J Physiol. 1960 Jun;151:518–538. doi: 10.1113/jphysiol.1960.sp006457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FUJINO M., FUJINO S. DIE BEZIEHUNG ZWISCHEN COFFEIN-KONTRAKTUR UND CALCIUM AM FROSCHSKELETMUSKEL. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;278:478–486. [PubMed] [Google Scholar]
- Gage P. W., Eisenberg R. S. Action potentials without contraction in frog skeletal muscle fibers with disrupted transverse tubules. Science. 1967 Dec 29;158(3809):1702–1703. doi: 10.1126/science.158.3809.1702. [DOI] [PubMed] [Google Scholar]
- Gutmann E., Sandow A. Caffeine-induced contracture and potentiation of contraction in normal and denervated rat muscle. Life Sci. 1965 Jun;4(11):1149–1156. doi: 10.1016/0024-3205(65)90104-9. [DOI] [PubMed] [Google Scholar]
- Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
- WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]
- WEBER A., HERZ R. The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem. 1963 Feb;238:599–605. [PubMed] [Google Scholar]