Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Dec 1;52(6):887–907. doi: 10.1085/jgp.52.6.887

The Form of Sodium-Calcium Competition at the Frog Myoneural Junction

R I Birks 1, P G R Burstyn 1, D R Firth 1
PMCID: PMC2225848  PMID: 4301843

Abstract

The times required for a steady rate of miniature end-plate potential discharge to be reached in response to changes in extracellular [K+], [Na+], and [Ca++] have been measured. In the presence of 15 mM KCl, Ca++ raises and Na+ lowers the steady-state mepp frequency; but the depressive effect on Na+ is not specific: Li+ can replace Na+ to a large extent. Mepp frequency has been found to depend on the ratio of [Cao ++]/[Nao +]. It is assumed that in the steady state, intracellular sodium will change when extracellular sodium is changed. Because both intracellular and extracellular sodium at motor nerve endings affect acetylcholine release, it is proposed that mepp frequency depends on the ratio [Cao] [Nai]2·/[Nao]2 Two models are proposed. Firstly, to account for the action of sodium and calcium a carrier is postulated for which Ca++ and Na+ compete. The carrier determines a maximum level of intracellular Ca++ far lower than predicted by the Nernst equation for Ca. Secondly, to account for activation of acetylcholine release by a small influx of Ca++, the ions are presumed to enter the nerve ending in a two stage process through a small intermediate compartment and to act on the acetylcholine release site in this region rather than after entering directly into the cell.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birks R. I., Cohen M. W. The action of sodium pump inhibitors on neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1968 Jul 9;170(1021):381–399. doi: 10.1098/rspb.1968.0046. [DOI] [PubMed] [Google Scholar]
  2. Dodge F. A., Jr, Rahamimoff R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol. 1967 Nov;193(2):419–432. doi: 10.1113/jphysiol.1967.sp008367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Katz B., Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968 Mar;195(2):481–492. doi: 10.1113/jphysiol.1968.sp008469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Post R. L., Albright C. D., Dayani K. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes. J Gen Physiol. 1967 May;50(5):1201–1220. doi: 10.1085/jgp.50.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rahamimoff R., Colomo F. Inhibitory action of sodium ions on transmitter release at the motor end-plate. Nature. 1967 Sep 9;215(5106):1174–1176. doi: 10.1038/2151174a0. [DOI] [PubMed] [Google Scholar]
  7. Schatzmann H. J. ATP-dependent Ca++-extrusion from human red cells. Experientia. 1966 Jun 15;22(6):364–365. doi: 10.1007/BF01901136. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES