Abstract
In plasma membranes of intact cells an enzymatic pump actively transports sodium ions inward and potassium ions outward. In preparations of broken membranes it appears as an adenosine triphosphatase dependent on magnesium, sodium, and potassium ions together. In this adenosine triphosphatase a phosphorylated intermediate is formed from adenosine triphosphate in the presence of sodium ions and is hydrolyzed with the addition of potassium ions. The normal intermediate was not split by adenosine diphosphate. However, selective poisoning by N-ethylmaleimide or partial inhibition by a low magnesium ion concentration yielded an intermediate split by adenosine diphosphate and insensitive to potassium ions. Pulse experiments on the native enzyme supported further a hypothesis of a sequence of phosphorylated forms, the first being made reversibly from adenosine triphosphate in the presence of sodium ion and the second being made irreversiblyfrom the first and hydrolyzed in the presence of potassium ion. The cardioactive steriod inhibitor, ouabain, appeared to combine preferentially with the second form. Phosphorylation was at the same active site according to electrophoretic patterns of proteolytic phosphorylated fragments of both reactive forms. It is concluded that there is a conformational change in the active center for phosphorylation during the normal reaction sequence. This change may be linked to one required theoretically for active translocation of ions across the cell membrane.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).