Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1969 Aug 1;54(2):178–187. doi: 10.1085/jgp.54.2.178

A Fixed Charge Model of the Transverse Tubular System of Frog Sartorius

Stanley I Rapoport 1
PMCID: PMC2225923  PMID: 5796368

Abstract

Volume changes of the transverse tubular system (T system) of frog sartorius in different solutions can be explained by a model which assumes fixed negative charges in the T system lumen, an open T system mouth, and a Donnan equilibrium between the T system and external solution. The T system volume is regulated by the osmotic pressure difference between the lumen and external solution, as well as by constraining forces whose nature is as yet unclear. The decreased swelling tendency produced by hypotonic solutions and increased tendency produced by some hypertonic solutions are ascribed to changes in the pressure constraint from the sarcoplasm. Fixed charge concentration was estimated tentatively from swelling and resistivity data to be between 0.1 and 0.4 M.

Full Text

The Full Text of this article is available as a PDF (567.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Endo M. Entry of fluorescent dyes into the sarcotubular system of the frog muscle. J Physiol. 1966 Jul;185(1):224–238. doi: 10.1113/jphysiol.1966.sp007983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FATT P. AN ANALYSIS OF THE TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:606–651. doi: 10.1098/rspb.1964.0023. [DOI] [PubMed] [Google Scholar]
  3. FREYGANG W. H., Jr, GOLDSTEIN D. A., HELLAM D. C., PEACHEY L. D. THE RELATION BETWEEN THE LATE AFTER-POTENTIAL AND THE SIZE OF THE TRANSVERSE TUBULAR SYSTEM OF FROG MUSCLE. J Gen Physiol. 1964 Nov;48:235–263. doi: 10.1085/jgp.48.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freygang W. H., Jr, Rapoport S. I., Peachey L. D. Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure. J Gen Physiol. 1967 Nov;50(10):2437–2458. doi: 10.1085/jgp.50.10.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HOROWICZ P. The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J Physiol. 1960 Sep;153:370–385. doi: 10.1113/jphysiol.1960.sp006540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  8. RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rapoport S. I., Peachey L. D., Goldstein D. A. Swelling of the transverse tubular system in frog sartorius. J Gen Physiol. 1969 Aug;54(2):166–177. doi: 10.1085/jgp.54.2.166. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES