Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1969 Sep 1;54(3):397–414. doi: 10.1085/jgp.54.3.397

Localization of Hydrogen Ion and Chloride Ion Fluxes in Nitella

Donald G Spear 1, June K Barr 1, C E Barr 1
PMCID: PMC2225932  PMID: 5806597

Abstract

Alternating bands of acid and base formation have been detected along the length of the internodal cell of Nitella clavata when it is illuminated, while in the dark this phenomenon is minimal. Chloride influx occurs only or largely in the acid-extruding regions, and this is also a light-dependent ion movement. Chloride efflux is slightly dependent on illumination and is not localized as are H+ efflux and Cl- influx. The results obtained support Kitasato's (1968) proposal that a large passive H+ influx is balanced by an active efflux of this ion. Transport mechanisms suggested by the correlations of Cl- and HCO3 - influxes with H+ extrusion are discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr C. E., Broyer T. C. Effect of Light on Sodium Influx, Membrane Potential, and Protoplasmic Streaming in Nitella. Plant Physiol. 1964 Jan;39(1):48–52. doi: 10.1104/pp.39.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GAFFEY C. T., MULLINS L. J. Ion fluxes during the action potential in Chara. J Physiol. 1958 Dec 30;144(3):505–524. doi: 10.1113/jphysiol.1958.sp006116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heber U. W., Santarius K. A. Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim Biophys Acta. 1965 Nov 29;109(2):390–408. doi: 10.1016/0926-6585(65)90166-4. [DOI] [PubMed] [Google Scholar]
  4. Kitasato H. The influence of H+ on the membrane potential and ion fluxes of Nitella. J Gen Physiol. 1968 Jul;52(1):60–87. doi: 10.1085/jgp.52.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Latzko E., Gibbs M. Level of photosynthetic intermediates in isolated spinach chloroplasts. Plant Physiol. 1969 Mar;44(3):396–402. doi: 10.1104/pp.44.3.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MACROBBIE E. A., DAINTY J. Ion transport in Nitellopsis obtusa. J Gen Physiol. 1958 Nov 20;42(2):335–353. doi: 10.1085/jgp.42.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MACROBBIE E. A. THE NATURE OF THE COUPLING BETWEEN LIGHT ENERGY AND ACTIVE ION TRANSPORT IN NITELLA TRANSLUCENS. Biochim Biophys Acta. 1965 Jan 25;94:64–73. doi: 10.1016/0926-6585(65)90008-7. [DOI] [PubMed] [Google Scholar]
  8. Raven J. A. Light stimulation of active transport in Hydrodictyon africanum. J Gen Physiol. 1967 Jul;50(6):1627–1640. doi: 10.1085/jgp.50.6.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Robinson J. M., Stocking C. R. Oxygen evolution and the permeability of the outer envelope of isolated whole chloroplasts. Plant Physiol. 1968 Oct;43(10):1597–1604. doi: 10.1104/pp.43.10.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rothfield L., Finkelstein A. Membrane biochemistry. Annu Rev Biochem. 1968;37:463–496. doi: 10.1146/annurev.bi.37.070168.002335. [DOI] [PubMed] [Google Scholar]
  11. Urbach W., Hudson M. A., Ullrich W., Santarius K. A., Heber U. Verteilung und Wanderung von Phosphoglycerat zwischen den Chloroplasten und dem Cytoplasma während der Photosynthese. Z Naturforsch B. 1965 Sep;20(9):890–898. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES