Abstract
The ventral photoreceptor cells of Limulus polyphemus resemble the retinular cells of the lateral eyes both in electrical behavior and in morphology. Because of the great size of the ventral photoreceptor cells they are easy to impale with glass capillary micropipettes. Their location along the length of the ventral eye nerve makes them easy to dissect out and fix for electron microscopy. Each cell has a large, ellipsoidal soma that tapers into an axon whose length depends upon the distance of the cell from the brain. The cell body contains a rich variety of cytoplasmic organelles with an especially abundant endoplasmic reticulum. The most prominent structural feature is the microvillous rhabdomere, a highly modified infolding of the plasmalemma. The microvilli are tightly packed together within the rhabdomere, and quintuple-layered junctions are encountered wherever microvillar membranes touch each other. Glial cells cover the surface of the photoreceptor cell and send long, sheet-like projections of their cytoplasm into the cell body of the photoreceptor cell. Some of these projections penetrate the rhabdomere deep within the cell and form quintuple-layered junctions with the microvilli. Junctions between glial cells and the photoreceptor cell and between adjacent glial cells are rarely encountered elsewhere, indicating that there is an open pathway between the intermicrovillous space and the extracellular medium. The axon has a normal morphology but it is electrically inexcitable.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benedetti E. L., Emmelot P. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J Cell Biol. 1968 Jul;38(1):15–24. doi: 10.1083/jcb.38.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eguchi E., Waterman T. H. Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z Zellforsch Mikrosk Anat. 1967;79(2):209–229. doi: 10.1007/BF00369286. [DOI] [PubMed] [Google Scholar]
- Fahrenbach W. H. The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z Zellforsch Mikrosk Anat. 1969;93(4):451–483. doi: 10.1007/BF00338531. [DOI] [PubMed] [Google Scholar]
- Horridge G. A., Barnard P. B. Movement of palisade in locust retinula cells when illuminated. Q J Microsc Sci. 1965 Jun;106(2):131–135. [PubMed] [Google Scholar]
- Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasansky A. Cell junctions in ommatidia of Limulus. J Cell Biol. 1967 May;33(2):365–383. doi: 10.1083/jcb.33.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
- Millecchia R., Bradbury J., Mauro A. Simple photoreceptors in Limulus polyphemus. Science. 1966 Dec 2;154(3753):1199–1201. doi: 10.1126/science.154.3753.1199. [DOI] [PubMed] [Google Scholar]
- SMITH T. G., BAUMANN F., FUORTES M. G. ELECTRICAL CONNECTIONS BETWEEN VISUAL CELLS IN THE OMMATIDIUM OF LIMULUS. Science. 1965 Mar 19;147(3664):1446–1448. doi: 10.1126/science.147.3664.1446. [DOI] [PubMed] [Google Scholar]
- Young R. W., Droz B. The renewal of protein in retinal rods and cones. J Cell Biol. 1968 Oct;39(1):169–184. doi: 10.1083/jcb.39.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]