Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1969 Nov 1;54(5):553–575. doi: 10.1085/jgp.54.5.553

Inactivation of the Potassium Conductance and Related Phenomena Caused by Quaternary Ammonium Ion Injection in Squid Axons

Clay M Armstrong 1
PMCID: PMC2225944  PMID: 5346528

Abstract

Several analogues of the tetraethylammonium (TEA+) ion were injected into the giant axon of the squid, and the resultant changes in time course and magnitude of the potassium current (I K) were studied. For all the analogues used, three of the ethyl side chains of TEA+ were left unchanged, while the fourth chain was either lengthened or shortened. Increasing the length of this chain increased binding to the blocking site in the channel by a factor of roughly two for each added CH2 group. The effect on the rate of entry into the blocking site was relatively slight. Thus the concentration for half-suppression of g K decreased by about the same factor of two for each added CH2. All the analogues caused anomalous or ingoing rectification. The longest chain analogue used, pentyltriethylammonium ion, caused rapid inactivation of g K, and this inactivation had properties quite similar to g Na inactivation. The anomalous rectification and the g K inactivation caused by these compounds have the same basic mechanism.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARMSTRONG C. M., BINSTOCK L. THE EFFECTS OF SEVERAL ALCOHOLS ON THE PROPERTIES OF THE SQUID GIANT AXON. J Gen Physiol. 1964 Nov;48:265–277. doi: 10.1085/jgp.48.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibers. J Gen Physiol. 1968 May;51(5 Suppl):188S+–188S+. [PubMed] [Google Scholar]
  4. COLE K. S., MOORE J. W. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J. 1960 Sep;1:1–14. doi: 10.1016/s0006-3495(60)86871-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HAGIWARA S., SAITO N. Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J Physiol. 1959 Oct;148:161–179. doi: 10.1113/jphysiol.1959.sp006279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HOYT R. C. THE SQUID GIANT AXON. MATHEMATICAL MODELS. Biophys J. 1963 Sep;3:399–431. doi: 10.1016/s0006-3495(63)86829-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoyt R. C. Sodium inactivation in nerve fibers. Biophys J. 1968 Oct;8(10):1074–1097. doi: 10.1016/S0006-3495(68)86540-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NAKAJIMA S., IWASAKI S., OBATA K. Delayed rectification and anomalous rectification in frog's skeletal muscle membrane. J Gen Physiol. 1962 Sep;46:97–115. doi: 10.1085/jgp.46.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakajima S. Analysis of K inactivation and TEA action in the supramedullary cells of puffer. J Gen Physiol. 1966 Mar;49(4):629–640. doi: 10.1085/jgp.49.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nakajima S., Kusano K. Behavior of delayed current under voltage clamp in the supramedullary neurons of puffer. J Gen Physiol. 1966 Mar;49(4):613–628. doi: 10.1085/jgp.49.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES