Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1969 Dec 1;54(6):713–729. doi: 10.1085/jgp.54.6.713

Studies on the Active Transport of Calcium in Human Red Cells

Kwang Soo Lee 1, Bak Chang Shin 1
PMCID: PMC2225953  PMID: 5357189

Abstract

The Ca++ transport mechanism in the red cell membrane was studied in resealed ghost cells. It was found that the red cell membrane can transport Ca++ from inside the cell into the medium against great concentration gradient ratios. Tracing the movement of 45Ca infused inside red cells indicated that over 95% of all Ca++ in the cells was transported into media in 20 min incubation under the optimum experimental conditions. The influence of temperature on the rate constant of transport indicated an activation energy of 13,500 cal per mole. The optimum pH range of media for the transport was between 7.5 and 8.5. As energy sources, ATP1, CTP, and UTP were about equally effective, GTP somewhat less effective, and ITP least effective among the nucleotides tested. The Ca++ transport does not appear to involve exchange of Ca++ with any monovalent or divalent cations. Also, it is not influenced by oligomycin, sodium azide, or ouabain in high concentrations, which inhibit the Ca++ transport in mitochondria or in sarcoplasmic reticulum. In these respects, the Ca++ transport mechanism in the red cell membrane is different from those of mitochondria and the sarcoplasmic reticulum.

Full Text

The Full Text of this article is available as a PDF (951.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARSTEN M. E., MOMMAERTS W. F. THE ACCUMULATION OF CALCIUM IONS BY SARCOTUBULAR VESICLES. J Gen Physiol. 1964 Nov;48:183–197. doi: 10.1085/jgp.48.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  4. Carvalho A. P., Leo B. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. J Gen Physiol. 1967 May;50(5):1327–1352. doi: 10.1085/jgp.50.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DELUCA H. F., ENGSTROM G. W. Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1744–1750. doi: 10.1073/pnas.47.11.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ENGSTROM G. W., DELUCA H. F. THE NATURE OF CA++ BINDING BY KIDNEY MITOCHONDRIA. Biochemistry. 1964 Mar;3:379–383. doi: 10.1021/bi00891a013. [DOI] [PubMed] [Google Scholar]
  7. Ebashi S., Lipmann F. ADENOSINE TRIPHOSPHATE-LINKED CONCENTRATION OF CALCIUM IONS IN A PARTICULATE FRACTION OF RABBIT MUSCLE. J Cell Biol. 1962 Sep 1;14(3):389–400. doi: 10.1083/jcb.14.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GENT W. L., TROUNCE J. R., WALSER M. THE BINDING OF CALCIUM ION BY THE HUMAN ERYTHROCYTE MEMBRANE. Arch Biochem Biophys. 1964 Jun;105:582–589. doi: 10.1016/0003-9861(64)90054-2. [DOI] [PubMed] [Google Scholar]
  9. Harrison D. G., Long C. The calcium content of human erythrocytes. J Physiol. 1968 Dec;199(2):367–381. doi: 10.1113/jphysiol.1968.sp008658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katz A. M., Repke D. I. Quantitative aspects of dog cardiac microsomal calcium binding and calcium uptake. Circ Res. 1967 Aug;21(2):153–162. doi: 10.1161/01.res.21.2.153. [DOI] [PubMed] [Google Scholar]
  11. Lee K. S., Ladinsky H., Choi S. J., Kasuya Y. Studies on the in vitro interaction of electrical stimulation and Ca++ movement in sarcoplasmic reticulum. J Gen Physiol. 1966 Mar;49(4):689–715. doi: 10.1085/jgp.49.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee K. S. Present status of cardiac relaxing factor. Fed Proc. 1965 Nov-Dec;24(6):1432–1437. [PubMed] [Google Scholar]
  13. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schatzmann H. J. ATP-dependent Ca++-extrusion from human red cells. Experientia. 1966 Jun 15;22(6):364–365. doi: 10.1007/BF01901136. [DOI] [PubMed] [Google Scholar]
  15. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES