Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Sep 1;56(3):376–391. doi: 10.1085/jgp.56.3.376

Photoreceptor Potentials of Opposite Polarity in the Eye of the Scallop, Pecten irradians

John S McReynolds 1, A L F Gorman 1
PMCID: PMC2225962  PMID: 5476388

Abstract

Intracellular recordings were obtained from single visual cells of the scallop, Pecten irradians. Two types of units are found. One type gives a graded, depolarizing response to light and the other a graded, hyperpolarizing response. The depolarizing cells are 2–3 log units more sensitive to light and have a longer latency than the hyperpolarizing type. At high light intensities the depolarizing cells are inactivated while the hyperpolarizing cells maintain their responses. When action potentials are seen they occur during illumination in depolarizing cells ("on" response) and after illumination in hyperpolarizing cells ("off" response). The evidence suggests that the depolarizing responses are from the microvilli-brearing proximal cells, and the hyperpolarizing responses from the ciliary-type distal cells of the retina, and that both responses are directly produced by light.

Full Text

The Full Text of this article is available as a PDF (979.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber V. C., Land M. F. Eye of the cockle, Cardium edule: anatomical and physiological investigations. Experientia. 1967 Aug 15;23(8):677–678. doi: 10.1007/BF02144199. [DOI] [PubMed] [Google Scholar]
  2. Bortoff A. Localization of slow potential responses in the Necturus retina. Vision Res. 1964 Dec;4(11):627–635. doi: 10.1016/0042-6989(64)90048-3. [DOI] [PubMed] [Google Scholar]
  3. Dennis M. J. Electrophysiology of the visual system in a nudibranch mollusc. J Neurophysiol. 1967 Nov;30(6):1439–1465. doi: 10.1152/jn.1967.30.6.1439. [DOI] [PubMed] [Google Scholar]
  4. Eakin R. M. Evolution of photoreceptors. Cold Spring Harb Symp Quant Biol. 1965;30:363–370. doi: 10.1101/sqb.1965.030.01.036. [DOI] [PubMed] [Google Scholar]
  5. Gorman A. L., McReynolds J. S. Hyperpolarizing and depolarizing receptor potentials in the scallop eye. Science. 1969 Jul 18;165(3890):309–310. doi: 10.1126/science.165.3890.309. [DOI] [PubMed] [Google Scholar]
  6. HARTLINE H. K., WAGNER H. G., MACNICHOL E. F., Jr The peripheral origin of nervous activity in the visual system. Cold Spring Harb Symp Quant Biol. 1952;17:125–141. doi: 10.1101/sqb.1952.017.01.013. [DOI] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hafemann D. R., Miller S. L. Enzymatic softening of connective tissue sheaths to aid microelectrode penetration. Comp Biochem Physiol. 1967 Jul;22(1):303–307. doi: 10.1016/0010-406x(67)90190-9. [DOI] [PubMed] [Google Scholar]
  10. KENNEDY D. Neural photoreception in a lamellibranch mollusc. J Gen Physiol. 1960 Nov;44:277–299. doi: 10.1085/jgp.44.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaneko A., Hashimoto H. Recording site of the single cone response determined by an electrode marking technique. Vision Res. 1967 Nov;7(11):847–851. doi: 10.1016/0042-6989(67)90005-3. [DOI] [PubMed] [Google Scholar]
  12. Kuffler S. W., Nicholls J. G., Orkand R. K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):768–787. doi: 10.1152/jn.1966.29.4.768. [DOI] [PubMed] [Google Scholar]
  13. Land M. F. Image formation by a concave reflector in the eye of the scallop, Pecten maximus. J Physiol. 1965 Jul;179(1):138–153. doi: 10.1113/jphysiol.1965.sp007653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MILLER W. H. Derivatives of cilia in the distal sense cells of the retina of Pecten. J Biophys Biochem Cytol. 1958 Mar 25;4(2):227–228. doi: 10.1083/jcb.4.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McReynolds J. S., Gorman A. L. Membrane conductances and spectral sensitivities of Pecten photoreceptors. J Gen Physiol. 1970 Sep;56(3):392–406. doi: 10.1085/jgp.56.3.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NAKA K. I. Recording of retinal action potentials from single cells in the insect compound eye. J Gen Physiol. 1961 Jan;44:571–584. doi: 10.1085/jgp.44.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  18. RATLIFF F., MUELLER C. G. Synthesis of "on-off" and "of" responses in a visual-neural system. Science. 1957 Oct 25;126(3278):840–841. doi: 10.1126/science.126.3278.840-a. [DOI] [PubMed] [Google Scholar]
  19. RUCK P. Electrophysiology of the insect dorsal ocellus. II. Mechanisms of generation and inhibition of impulses in the ocellar nerve of dragonflies. J Gen Physiol. 1961 Jan;44:629–639. doi: 10.1085/jgp.44.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith T. G., Baumann F. The functional organization within the ommatidium of the lateral eye of limulus. Prog Brain Res. 1969;31:313–349. doi: 10.1016/S0079-6123(08)63248-3. [DOI] [PubMed] [Google Scholar]
  21. Tomita T. Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol. 1965;30:559–566. doi: 10.1101/sqb.1965.030.01.054. [DOI] [PubMed] [Google Scholar]
  22. Toyoda J., Nosaki H., Tomita T. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 1969 Apr;9(4):453–463. doi: 10.1016/0042-6989(69)90134-5. [DOI] [PubMed] [Google Scholar]
  23. Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES