Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Oct 1;56(4):491–520. doi: 10.1085/jgp.56.4.491

Visual Adaptation in the Retina of the Skate

John E Dowling 1, Harris Ripps 1
PMCID: PMC2225965  PMID: 5507093

Abstract

The electroretinogram (ERG) and single-unit ganglion cell activity were recorded from the eyecup of the skate (Raja erinacea and R. oscellata), and the adaptation properties of both types of response compared with in situ rhodopsin measurements obtained by fundus reflectometry. Under all conditions tested, the b-wave of the ERG and the ganglion cell discharge showed identical adaptation properties. For example, after flash adaptation that bleached 80% of the rhodopsin, neither ganglion cell nor b-wave activity could be elicited for 10–15 min. Following this unresponsive period, thresholds fell rapidly; by 20 min after the flash, sensitivity was within 3 log units of the dark-adapted level. Further recovery of threshold was slow, requiring an additional 70–90 min to reach absolute threshold. Measurements of rhodopsin levels showed a close correlation with the slow recovery of threshold that occurred between 20 and 120 min of dark adaptation; there is a linear relation between rhodopsin concentration and log threshold. Other experiments dealt with the initial unresponsive period induced by light adaptation. The duration of this unresponsive period depended on the brightness of the adapting field; with bright backgrounds, suppression of retinal activity lasted 20–25 min, but sensitivity subsequently returned and thresholds fell to a steady-state value. At all background levels tested, increment thresholds were linearly related to background luminance.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlow H. B. Dark-adaptation: a new hypothesis. Vision Res. 1964 May;4(1):47–58. doi: 10.1016/0042-6989(64)90031-8. [DOI] [PubMed] [Google Scholar]
  2. Baumann C., Scheibner H. The dark adaptation of single units in the isolated frog retina following partial bleaching of rhodopsin. Vision Res. 1968 Sep;8(9):1127–1138. doi: 10.1016/0042-6989(68)90022-9. [DOI] [PubMed] [Google Scholar]
  3. Beatty D. D. Visual pigments of 3 species of cartilaginous fishes. Nature. 1969 Apr 19;222(5190):285–285. doi: 10.1038/222285a0. [DOI] [PubMed] [Google Scholar]
  4. Brown K. T., Watanabe K., Murakami M. The early and late receptor potentials of monkey cones and rods. Cold Spring Harb Symp Quant Biol. 1965;30:457–482. doi: 10.1101/sqb.1965.030.01.045. [DOI] [PubMed] [Google Scholar]
  5. Bäck I., Donner K. O., Reuter T. The screening effect of the pigment epithelium on the retinal rods in the frog. Vision Res. 1965 Apr;5(3):101–111. doi: 10.1016/0042-6989(65)90058-1. [DOI] [PubMed] [Google Scholar]
  6. Cone R. A., Brown P. K. Spontaneous regeneration of rhodopsin in the isolated rat retina. Nature. 1969 Mar 1;221(5183):818–820. doi: 10.1038/221818a0. [DOI] [PubMed] [Google Scholar]
  7. Cone R. A., Cobbs W. H., 3rd Rhodopsin cycle in the living eye of the rat. Nature. 1969 Mar 1;221(5183):820–822. doi: 10.1038/221820a0. [DOI] [PubMed] [Google Scholar]
  8. DOWLING J. E., HUBBARD R. EFFECT OF INSTANTANEOUS FLASHES ON ADAPTATION OF THE EYE. EFFECTS OF BRILLIANT FLASHES ON LIGHT AND DARK ADAPTATION. Nature. 1963 Sep 7;199:972–975. doi: 10.1038/199972a0. [DOI] [PubMed] [Google Scholar]
  9. DOWLING J. E. NEURAL AND PHOTOCHEMICAL MECHANISMS OF VISUAL ADAPTATION IN THE RAT. J Gen Physiol. 1963 Jul;46:1287–1301. doi: 10.1085/jgp.46.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donner K. O., Reuter T. Dark-adaptation processes in the rhodopsin rods of the frog's retina. Vision Res. 1967 Jan;7(1):17–41. doi: 10.1016/0042-6989(67)90023-5. [DOI] [PubMed] [Google Scholar]
  11. Donner K. O., Reuter T. The dark-adaptation of single units in the frog's retina and its relation to the regeneration of rhodopsin. Vision Res. 1965 Dec;5(11):615–632. doi: 10.1016/0042-6989(65)90035-0. [DOI] [PubMed] [Google Scholar]
  12. FUORTES M. G., GUNKEL R. D., RUSHTON W. A. Increment thresholds in a subject deficient in cone vision. J Physiol. 1961 Apr;156:179–192. doi: 10.1113/jphysiol.1961.sp006667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frank R. N., Dowling J. E. Rhodopsin photoproducts: effects on electroretinogram sensitivity in isolated perfused rat retina. Science. 1968 Aug 2;161(3840):487–489. doi: 10.1126/science.161.3840.487. [DOI] [PubMed] [Google Scholar]
  14. Hamasaki D. I., Bridges C. D. Properties of the electroretinogram in three elasmobranch species. Vision Res. 1965 Oct;5(9):483–496. doi: 10.1016/0042-6989(65)90083-0. [DOI] [PubMed] [Google Scholar]
  15. Hubbard R., Kropf A. THE ACTION OF LIGHT ON RHODOPSIN. Proc Natl Acad Sci U S A. 1958 Feb;44(2):130–139. doi: 10.1073/pnas.44.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liebman P. A., Entine G. Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 1968 Jul;8(7):761–775. doi: 10.1016/0042-6989(68)90128-4. [DOI] [PubMed] [Google Scholar]
  17. MATTHEWS R. G., HUBBARD R., BROWN P. K., WALD G. TAUTOMERIC FORMS OF METARHODOPSIN. J Gen Physiol. 1963 Nov;47:215–240. doi: 10.1085/jgp.47.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller R. F., Dowling J. E. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol. 1970 May;33(3):323–341. doi: 10.1152/jn.1970.33.3.323. [DOI] [PubMed] [Google Scholar]
  19. Muntz W. R., Northmore D. P., Pragnell V. Increment thresholds in photopic conditions in the hooded rat. Nature. 1969 Sep 20;223(5212):1280–1281. doi: 10.1038/2231280a0. [DOI] [PubMed] [Google Scholar]
  20. RICHARDSON K. C. THE FINE STRUCTURE OF THE ALBINO RABBIT IRIS WITH SPECIAL REFERENCE TO THE IDENTIFICATION OF ADRENERGIC AND CHOLINERGIC NERVES AND NERVE ENDINGS IN ITS INTRINSIC MUSCLES. Am J Anat. 1964 Mar;114:173–205. doi: 10.1002/aja.1001140202. [DOI] [PubMed] [Google Scholar]
  21. Ripps H., Weale R. A. Flash bleaching of rhodopsin in the human retina. J Physiol. 1969 Jan;200(1):151–159. doi: 10.1113/jphysiol.1969.sp008686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ripps H., Weale R. A. Rhodopsin regeneration in man. Nature. 1969 May 24;222(5195):775–777. doi: 10.1038/222775a0. [DOI] [PubMed] [Google Scholar]
  23. SMITH S. W., DIMMICK F. L. Measurement of the light adaptation of the rods. J Opt Soc Am. 1957 May;47(5):391–393. doi: 10.1364/josa.47.000391. [DOI] [PubMed] [Google Scholar]
  24. Siegel I. M., Graham C. H., Ripps H., Hsia Y. Analysis of photopic and scotopic function in an incomplete achromat. J Opt Soc Am. 1966 May;56(5):699–704. doi: 10.1364/josa.56.000699. [DOI] [PubMed] [Google Scholar]
  25. TOMITA T. Electrical activity in the vertebrate retina. J Opt Soc Am. 1963 Jan;53:49–57. doi: 10.1364/josa.53.000049. [DOI] [PubMed] [Google Scholar]
  26. WALD G., BROWN P. K., GIBBONS I. R. The problem of visual excitation. J Opt Soc Am. 1963 Jan;53:20–35. doi: 10.1364/josa.53.000020. [DOI] [PubMed] [Google Scholar]
  27. WEALE R. A. RELATION BETWEEN DARK ADAPTATION AND VISUAL PIGMENT REGENERATION. J Opt Soc Am. 1964 Jan;54:128–129. doi: 10.1364/josa.54.000128. [DOI] [PubMed] [Google Scholar]
  28. Weale R. A. On an early stage of rhodopsin regeneration in man. Vision Res. 1967 Nov;7(11):819–827. doi: 10.1016/0042-6989(67)90002-8. [DOI] [PubMed] [Google Scholar]
  29. Weinstein G. W. Electroretinographic and ganglion cell sensitivity in the isolated rat retina. Ophthalmologica. 1969;158 (Suppl):691–699. [PubMed] [Google Scholar]
  30. Weinstein G. W., Hobson R. R., Dowling J. E. Light and dark adaptation in the isolated rat retina. Nature. 1967 Jul 8;215(5097):134–138. doi: 10.1038/215134a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES