Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Oct 1;56(4):521–541. doi: 10.1085/jgp.56.4.521

Solvent Water for Electrolytes in the Muscle Fiber of the Giant Barnacle

J A M Hinke 1
PMCID: PMC2225969  PMID: 5507094

Abstract

Seven experiments are described which permit estimation of the "solvent water" or the "osmotically active water" of the dissected fiber from the giant barnacle, Balanus nubilus. Each of the first four experiments includes the measurement of a free ion activity in the myoplasm by means of a Na+, K+, or Cl- ion-specific microelectrode. The fifth experiment makes use of a membrane potential vs. [K]o curve. The last two experiments measured fiber water and fiber volume as bath osmolarity was changed. The seven independent estimations of solvent water ranged from 0.64 to 0.72 of fiber water with a mean of 0.68. Since the extracellular space of single fibers was about 7% of fiber water, it was concluded that 25% of analyzable water was not acting as solvent for the osmotically active solutes in the myoplasm.

Full Text

The Full Text of this article is available as a PDF (998.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D., Hinke J. A. Sodium compartmentalization in single muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1970 Feb;48(2):139–146. doi: 10.1139/y70-022. [DOI] [PubMed] [Google Scholar]
  3. BRATTON C. B., HOPKINS A. L., WEINBERG J. W. NUCLEAR MAGNETIC RESONANCE STUDIES OF LIVING MUSCLE. Science. 1965 Feb 12;147(3659):738–739. doi: 10.1126/science.147.3659.738. [DOI] [PubMed] [Google Scholar]
  4. Cope F. W. NMR evidence for complexing of Na+ in muscle, kidney, and brain, and by actomyosin. The relation of cellular complexing of Na+ to water structure and to transport kinetics. J Gen Physiol. 1967 May;50(5):1353–1375. doi: 10.1085/jgp.50.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cope F. W. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J. 1969 Mar;9(3):303–319. doi: 10.1016/S0006-3495(69)86388-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DICK D. A. Osmotic properties of living cells. Int Rev Cytol. 1959;8:387–448. doi: 10.1016/s0074-7696(08)62736-9. [DOI] [PubMed] [Google Scholar]
  7. DYDYNSKA M., WILKIE D. R. THE OSMOTIC PROPERTIES OF STRIATED MUSCLE FIBERS IN HYPERTONIC SOLUTIONS. J Physiol. 1963 Nov;169:312–329. doi: 10.1113/jphysiol.1963.sp007258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunham P. B., Gainer H. The distribution of inorganic ions in lobster muscle. Biochim Biophys Acta. 1968 Apr 29;150(3):488–499. doi: 10.1016/0005-2736(68)90149-1. [DOI] [PubMed] [Google Scholar]
  9. Gainer H., Grundfest H. Permeability of alkali metal cations in lobster muscle. A comparison of electrophysiological and osmometric analyses. J Gen Physiol. 1968 Mar;51(3):399–425. doi: 10.1085/jgp.51.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gayton D. C., Hinke J. A. The location of chloride in single striated muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1968 Mar;46(2):213–219. doi: 10.1139/y68-035. [DOI] [PubMed] [Google Scholar]
  11. HAGIWARA S., CHICHIBU S., NAKA K. I. THE EFFECTS OF VARIOUS IONS ON RESTING AND SPIKE POTENTIALS OF BARNACLE MUSCLE FIBERS. J Gen Physiol. 1964 Sep;48:163–179. doi: 10.1085/jgp.48.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hazlewood C. F., Nichols B. L., Chamberlain N. F. Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature. 1969 May 24;222(5195):747–750. doi: 10.1038/222747a0. [DOI] [PubMed] [Google Scholar]
  14. LEV A. A. DETERMINATION OF ACTIVITY AND ACTIVITY COEFFICIENTS OF POTASSIUM AND SODIUM IONS IN FROG MUSCLE FIBRES. Nature. 1964 Mar 14;201:1132–1134. doi: 10.1038/2011132a0. [DOI] [PubMed] [Google Scholar]
  15. Lang M. A., Gainer H. Volume control by muscle fibers of the blue crab. Volume readjustment in hypotonic salines. J Gen Physiol. 1969 Mar;53(3):323–341. doi: 10.1085/jgp.53.3.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martinez D., Silvidi A. A., Stokes R. M. Nuclear magnetic resonance studies of sodium ions in isolated frog muscle and liver. Biophys J. 1969 Oct;9(10):1256–1260. doi: 10.1016/S0006-3495(69)86450-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McLaughlin S. G., Hinke J. A. Sodium and water binding in single striated muscle fibers of the giant barnacle. Can J Physiol Pharmacol. 1966 Sep;44(5):837–848. doi: 10.1139/y66-102. [DOI] [PubMed] [Google Scholar]
  18. REUBEN J. P., GIRARDIER L., GRUNDFEST H. WATER TRANSFER AND CELL STRUCTURE IN ISOLATED CRAYFISH MUSCLE FIBERS. J Gen Physiol. 1964 Jul;47:1141–1174. doi: 10.1085/jgp.47.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. REUBER J. P., LOPEZ E., BRANDT P. W., GRUNDFEST H. MUSCLE: VOLUME CHANGES IN ISOLATED SINGLE FIBERS. Science. 1963 Oct 11;142(3589):246–248. doi: 10.1126/science.142.3589.246. [DOI] [PubMed] [Google Scholar]
  20. Rome E. X-ray diffraction studies of the filament lattice of striated muscle in various bathing media. J Mol Biol. 1968 Oct 28;37(2):331–344. doi: 10.1016/0022-2836(68)90272-6. [DOI] [PubMed] [Google Scholar]
  21. TASKER P., SIMON S. E., JOHNSTONE B. M., SHANKLY K. H., SHAW F. H. The dimensions of the extracellular space in sartorius muscle. J Gen Physiol. 1959 Sep;43:39–53. doi: 10.1085/jgp.43.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES