Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Dec 1;56(6):732–750. doi: 10.1085/jgp.56.6.732

Energy Production in Cardiac Isotonic Contractions

C L Gibbs 1, W R Gibson 1
PMCID: PMC2225977  PMID: 5483104

Abstract

The energy output of rabbit papillary muscle is examined and it is shown that there is more energy liberated in an afterloaded isotonic contraction than in an "equivalent" isometric contraction. This statement holds true regardless of whether equivalence is based on the proposition that tension or the time integral of tension is the best index of muscle energy expenditure. Besides the external work performed there is additional heat production in isotonic contractions and this heat increases as the afterload is decreased. The additional heat is more evident when tension rather than the time integral of tension is made the determinant of energy expenditure. It is shown in single contractions that the rate of isotonic heat production, regardless of afterload size, never exceeds the heat rate recorded in an isometric contraction at the same initial length. Experiments reveal no simple linear correlation between isotonic energy output and contractile element work. Problems associated with the compartmentalization of the energy output of a contraction are discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITMAN N. A., LEVINE H. J. CONTRACTILE ELEMENT WORK: A MAJOR DETERMINANT OF MYOCARDIAL OXYGEN CONSUMPTION. J Clin Invest. 1964 Jul;43:1397–1408. doi: 10.1172/JCI105015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brady A. J. Active state in cardiac muscle. Physiol Rev. 1968 Jul;48(3):570–600. doi: 10.1152/physrev.1968.48.3.570. [DOI] [PubMed] [Google Scholar]
  3. CARLSON F. D., HARDY D. J., WILKIE D. R. Total energy production and phosphocreatine hydrolysis in the isotonic twitch. J Gen Physiol. 1963 May;46:851–882. doi: 10.1085/jgp.46.5.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coleman H. N. Effect of alterations in shortening and external work on oxygen consumption of cat papillary muscle. Am J Physiol. 1968 Jan;214(1):100–106. doi: 10.1152/ajplegacy.1968.214.1.100. [DOI] [PubMed] [Google Scholar]
  5. Coleman H. N., Sonnenblick E. H., Braunwald E. Myocardial oxygen consumption associated with external work: the Fenn effect. Am J Physiol. 1969 Jul;217(1):291–296. doi: 10.1152/ajplegacy.1969.217.1.291. [DOI] [PubMed] [Google Scholar]
  6. Gibbs C. L., Vaughan P. The effect of calcium depletion upon the tension-independent component of cardiac heat production. J Gen Physiol. 1968 Sep;52(3):532–549. doi: 10.1085/jgp.52.3.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HILL A. V. THE EFFECT OF LOAD ON THE HEAT OF SHORTENING OF MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:297–318. doi: 10.1098/rspb.1964.0004. [DOI] [PubMed] [Google Scholar]
  8. HILL A. V. THE EFFECT OF TENSION IN PROLONGING THE ACTIVE STATE IN A TWITCH. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:589–595. doi: 10.1098/rspb.1964.0021. [DOI] [PubMed] [Google Scholar]
  9. HILL A. V. THE VARIATION OF TOTAL HEAL PRODUCTION IN A TWITCH WITH VELOCITY OF SHORTENING. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:596–605. doi: 10.1098/rspb.1964.0022. [DOI] [PubMed] [Google Scholar]
  10. HILL A. V. The heat of activation and the heat of shortening in a muscle twitch. Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195–211. doi: 10.1098/rspb.1949.0019. [DOI] [PubMed] [Google Scholar]
  11. Jobsis F. F., Duffield J. C. Force, shortening, and work in muscular contraction: relative contributions to overall energy utilization. Science. 1967 Jun 9;156(3780):1388–1392. doi: 10.1126/science.156.3780.1388. [DOI] [PubMed] [Google Scholar]
  12. McDonald R. H., Jr, Taylor R. R., Cingolani H. E. Measurement of myocardial developed tension and its relation to oxygen consumption. Am J Physiol. 1966 Sep;211(3):667–673. doi: 10.1152/ajplegacy.1966.211.3.667. [DOI] [PubMed] [Google Scholar]
  13. Mommaerts W. F. Energetics of muscular contraction. Physiol Rev. 1969 Jul;49(3):427–508. doi: 10.1152/physrev.1969.49.3.427. [DOI] [PubMed] [Google Scholar]
  14. Parmley W. W., Sonnenblick E. H. Series elasticity in heart muscle. Its relation to contractile element velocity and proposed muscle models. Circ Res. 1967 Jan;20(1):112–123. doi: 10.1161/01.res.20.1.112. [DOI] [PubMed] [Google Scholar]
  15. Pool P. E., Chandler B. M., Seagren S. C., Sonnenblick E. H. Mechanochemistry of cardiac muscle. II. The isotonic contraction. Circ Res. 1968 Apr;22(4):465–472. doi: 10.1161/01.res.22.4.465. [DOI] [PubMed] [Google Scholar]
  16. SARNOFF S. J., GILMORE J. P., SKINNER N. S., Jr, WALLACE A. G., MITCHELL J. H. RELATION BETWEEN CORONARY BLOOD FLOW AND MYOCARDIAL OXYGEN CONSUMPTION. Circ Res. 1963 Dec;13:514–521. doi: 10.1161/01.res.13.6.514. [DOI] [PubMed] [Google Scholar]
  17. SONNENBLICK E. H., DOWNING S. E. Afterload as a primary determinat of ventricular performance. Am J Physiol. 1963 Apr;204:604–610. doi: 10.1152/ajplegacy.1963.204.4.604. [DOI] [PubMed] [Google Scholar]
  18. WILKIE D. R. Measurement of the series elastic component at various times during a single muscle twitch. J Physiol. 1956 Dec 28;134(3):527–530. doi: 10.1113/jphysiol.1956.sp005662. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES