Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1970 Dec 1;56(6):673–691. doi: 10.1085/jgp.56.6.673

Characteristics of the Amino Acid Transport System in the Mucosal Border of Rabbit Ileum

Jean Jacques Hajjar 1, Peter F Curran 1
PMCID: PMC2225979  PMID: 5483101

Abstract

The specificity of the neutral amino acid transport system in the brush border was examined by studying the ability of amino acid analogues to inhibit the unidirectional influx of phenylalanine from mucosal solution into the cells. Effects were evaluated in terms of the affinity of various substrates for the amino acid site in the transport system. The affinity of amino acids for the site was proportional to the number of carbon atoms in the side chain. Electron-withdrawing substituents in the ring of phenylalanine increased affinity and electron-releasing groups decreased affinity. Removal of the α-amino group from phenylalanine decreased affinity by a factor of approximately 50 and removal of the carboxyl group decreased affinity 12-fold. Effects on affinity of variations in the side chain of the amino acid can be comparable in magnitude to that of the carboxyl group. The effect of sodium ion on the transport system appears to be similar for all compounds tested.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Goldner A. M., Curran P. F. Alanine transport in rabbit jejunum. Am J Physiol. 1969 Oct;217(4):946–950. doi: 10.1152/ajplegacy.1969.217.4.946. [DOI] [PubMed] [Google Scholar]
  2. Christensen H. N., Liang M. Modes of uptake of benzylamine by the Ehrlich cell. J Biol Chem. 1966 Dec 10;241(23):5552–5556. [PubMed] [Google Scholar]
  3. Curran P. F., Hajjar J. J., Glynn I. M. The sodium-alanine interaction in rabbit ileum. Effect of alanine on sodium fluxes. J Gen Physiol. 1970 Mar;55(3):297–308. doi: 10.1085/jgp.55.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniels V. G., Dawson A. G., Newey H., Smyth D. H. Effect of carbon chain length and amino group position on neutral amino acid transport systems in rat small intestine. Biochim Biophys Acta. 1969 Apr;173(3):575–577. doi: 10.1016/0005-2736(69)90025-x. [DOI] [PubMed] [Google Scholar]
  6. Field M., Schultz S. G., Curran P. F. Alanine transport across isolated rabbit ileum. Biochim Biophys Acta. 1967 May 2;135(2):236–243. doi: 10.1016/0005-2736(67)90118-6. [DOI] [PubMed] [Google Scholar]
  7. Fonda M. L., Anderson B. M. D-amino acid oxidase. II. Studies of substrate-competitive inhibitors. J Biol Chem. 1968 Apr 25;243(8):1931–1935. [PubMed] [Google Scholar]
  8. Hajjar J. J., Lamont A. S., Curran P. F. The sodium-alanine interaction in rabbit ileum. Effect of sodium on alanine fluxes. J Gen Physiol. 1970 Mar;55(3):277–296. doi: 10.1085/jgp.55.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kittams D. W., Vidaver G. A. Inhibition by beta-phenylethylamine and similar compounds of glycine transport by pigeon red cells. Biochim Biophys Acta. 1969 Apr;173(3):540–547. doi: 10.1016/0005-2736(69)90018-2. [DOI] [PubMed] [Google Scholar]
  10. LIN E. C., HAGIHIRA H., WILSON T. H. Specificity of the transport system for neutral amino acids in the hamster intestine. Am J Physiol. 1962 May;202:919–925. doi: 10.1152/ajplegacy.1962.202.5.919. [DOI] [PubMed] [Google Scholar]
  11. MATTHEWS D. M., LASTER L. KINETICS OF INTESTINAL ACTIVE TRANSPORT OF FIVE NEUTRAL AMINO ACIDS. Am J Physiol. 1965 Apr;208:593–600. doi: 10.1152/ajplegacy.1965.208.4.593. [DOI] [PubMed] [Google Scholar]
  12. NATHANS D., TAPLEY D. F., ROSS J. E. Intestinal transport of amino acids studies in vitro with L-[1311] monoiodotyrosine. Biochim Biophys Acta. 1960 Jul 1;41:271–282. doi: 10.1016/0006-3002(60)90010-x. [DOI] [PubMed] [Google Scholar]
  13. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  14. Peterson S. C., Goldner A. M., Curran P. F. Glycine transport in rabbit ileum. Am J Physiol. 1970 Oct;219(4):1027–1032. doi: 10.1152/ajplegacy.1970.219.4.1027. [DOI] [PubMed] [Google Scholar]
  15. SPENCER R. P., WEINSTEIN J., SUSSMAN A., BOW T. M., MARKULIS M. A. Effect of structural analogues on intestinal accumulation of glycine. Am J Physiol. 1962 Oct;203:634–636. doi: 10.1152/ajplegacy.1962.203.4.634. [DOI] [PubMed] [Google Scholar]
  16. Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol. 1967 May;50(5):1241–1260. doi: 10.1085/jgp.50.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  18. Spencer R. P., Brody K. R., Vishno F. E. Role of the carboxyl group in intestinal amino acid transport. Biochim Biophys Acta. 1966 Apr 25;117(2):410–415. doi: 10.1016/0304-4165(66)90092-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES