Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Jul 1;58(1):94–116. doi: 10.1085/jgp.58.1.94

Active Cation Transport and Ouabain Binding in High Potassium and Low Potassium Red Blood Cells of Sheep

Philip B Dunham 1, Joseph F Hoffman 1
PMCID: PMC2226006  PMID: 5564763

Abstract

Red cells from high K sheep contained 82 mM K/liter cells and had a pump flux of 0.86 mM K/liter cells x hr; similarly, LK cells had 16.5 mM K/liter cells and a pump flux of 0.12 mM K/liter cells x hr. Using [3H]-ouabain, the relation between the number of ouabain molecules bound per cell and the concomitant per cent inhibition of the pump was found to be approximately linear for both HK and LK cells. The number of glycoside molecules necessary for 100 % inhibition of the pump was 42 for HK cells and 7.6 for LK cells, after correction for six nonspecific binding sites for each type of cell. The ratio of ouabain molecules/cell at 100 % inhibition was 5.5, HK to LK, and the ratio of the normal K pump fluxes was 7.2, HK to LK. The similarity of these ratios suggests that an important difference between HK and LK cells, determining the difference in pump fluxes, is the number of pump sites. The turnover times (ions/site x min) are 6000 and 4800 for HK and LK cells, respectively. The results also indicate a high specificity of binding of ouabain to pump sites.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers R. W., Koval G. J., Siegel Studies on the interaction of ouabain and other cardio-active steroids with sodium-potassium-activated adenosine triphosphatase. Mol Pharmacol. 1968 Jul;4(4):324–336. [PubMed] [Google Scholar]
  2. Dunham P. B., Hoffman J. F. Partial purification of the ouabain-binding component and of Na,K-ATPase from human red cell membranes. Proc Natl Acad Sci U S A. 1970 Jul;66(3):936–943. doi: 10.1073/pnas.66.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EVANS J. V., HARRIS H., WARREN F. L. The distribution of haemoglobin and blood potassium types in British breeds of sheep. Proc R Soc Lond B Biol Sci. 1958 Dec 4;149(935):249–262. doi: 10.1098/rspb.1958.0067. [DOI] [PubMed] [Google Scholar]
  4. EVANS J. V., KING J. W. Genetic control of sodium and potassium concentrations in the red blood cells of sheep. Nature. 1955 Jul 23;176(4473):171–171. doi: 10.1038/176171a0. [DOI] [PubMed] [Google Scholar]
  5. Ellory J. C., Tucker E. M. Stimulation of the potassium transport system in low potassium type sheep red cells by a specific antigen antibody reaction. Nature. 1969 May 3;222(5192):477–478. doi: 10.1038/222477a0. [DOI] [PubMed] [Google Scholar]
  6. Evans J. V. Red cell electrolytes and haemoglobin. Bibl Haematol. 1968;29:41–58. doi: 10.1159/000384593. [DOI] [PubMed] [Google Scholar]
  7. GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
  8. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HOFFMAN J. F. The active transport of sodium by ghosts of human red blood cells. J Gen Physiol. 1962 May;45:837–859. doi: 10.1085/jgp.45.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoffman J. F. The Interaction between Tritiated Ouabain and the Na-K Pump in Red Blood Cells. J Gen Physiol. 1969 Jul 1;54(1):343–353. [PMC free article] [PubMed] [Google Scholar]
  11. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  12. Landowne D., Ritchie J. M. The binding of tritiated ouabain to mammalian non-myelinated nerve fibres. J Physiol. 1970 Apr;207(2):529–537. doi: 10.1113/jphysiol.1970.sp009077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee P., Woo A., Tosteson D. C. Cytodifferentiation and membrane transport properties in LK sheep red cells. J Gen Physiol. 1966 Nov;50(2):379–390. doi: 10.1085/jgp.50.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  15. Rasmusen B. A., Hall J. G. Association between potassium concentration and serological type of sheep red blood cells. Science. 1966 Mar 25;151(3717):1551–1552. doi: 10.1126/science.151.3717.1551. [DOI] [PubMed] [Google Scholar]
  16. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  17. Schwartz A., Matsui H., Laughter A. H. Tritiated digoxin binding to (Na+ + K+)-activated adenosine triphosphatase: possible allosteric site. Science. 1968 Apr 19;160(3825):323–325. doi: 10.1126/science.160.3825.323. [DOI] [PubMed] [Google Scholar]
  18. TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES