Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Aug 1;58(2):190–210. doi: 10.1085/jgp.58.2.190

Chemical Modification of Membranes

1. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell

Philip A Knauf 1, Aser Rothstein 1
PMCID: PMC2226012  PMID: 5559622

Abstract

Four different amino-reactive reagents, 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid (SITS),1 1-fluoro-2,4-dinitrobenzene (FDNB), 2,4,6-trinitrobenzene sulfonic acid (TNBS), and 2-methoxy-5-nitrotropone (MNT) decrease the anion permeability of the human red blood cell, as measured by sulfate fluxes, whereas the sulfhydryl agent, parachloromercuriphenyl sulfonic acid (PCMBS), does not. In contrast, PCMBS increases the cation permeability as measured by K+ leakage, whereas SITS does not. Of the other agents, FDNB increases the cation permeability to the same extent as PCMBS but MNT and TNBS produce smaller increases. PCMBS does not protect against FDNB as it does against other sulfhydryl agents (X-irradiation) and the FDNB effect on cations is attributed to amino groups. Studies of the binding of SITS indicate that it does not penetrate into the membrane and its failure to influence cation permeability is attributed to its inability to reach an internal population of amino groups. It is concluded that two ion permeability barriers, both involving proteins, are present in the red blood cell. The more superficial barrier contains amino groups and controls anion flow; the more internal barrier contains sulfhydryl and amino groups and controls cation flow. The amino groups contribute to the control of permeability by virtue of their positive charges, but the role of sulfhydryl groups is not clear. Only a small fraction of the membrane protein amino and sulfhydryl is involved in the barriers.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMINOFF D. Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J. 1961 Nov;81:384–392. doi: 10.1042/bj0810384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butler P. J., Harris J. I., Hartley B. S., Leberman R. Reversible blocking of peptide amino groups by maleic anhydride. Biochem J. 1967 Jun;103(3):78P–79P. [PMC free article] [PubMed] [Google Scholar]
  3. COOK G. M., EYLAR E. H. SEPARATION OF THE M AND N BLOOD-GROUP ANTIGENS OF THE HUMAN ERYTHROCYTE. Biochim Biophys Acta. 1965 Mar 1;101:57–66. doi: 10.1016/0926-6534(65)90030-8. [DOI] [PubMed] [Google Scholar]
  4. Chen R. F. Fluorescent protein-dye conjugates. II. Gamma globulin conjugated with various dyes. Arch Biochem Biophys. 1969 Sep;133(2):263–276. doi: 10.1016/0003-9861(69)90454-8. [DOI] [PubMed] [Google Scholar]
  5. Cohen L. A. Group-specific reagents in protein chemistry. Annu Rev Biochem. 1968;37:695–726. doi: 10.1146/annurev.bi.37.070168.003403. [DOI] [PubMed] [Google Scholar]
  6. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  7. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  8. Freedman R. B., Radda G. K. Chemical modification of glutamate dehydrogenase by 2,4,6-trinitrobenzenesulphonic acid. Biochem J. 1969 Sep;114(3):611–619. doi: 10.1042/bj1140611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GIEBEL O., PASSOW H. [The permeability of erythrocyte membranes for organic anions. On the problem of diffusion through the pores]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:378–388. [PubMed] [Google Scholar]
  10. Habeeb A. F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966 Mar;14(3):328–336. doi: 10.1016/0003-2697(66)90275-2. [DOI] [PubMed] [Google Scholar]
  11. Hill R. J., Davis R. W. The pK of specific groups of proteins. I. The alpha-amino group of the alpha chain of human CO-hemoglobin. J Biol Chem. 1967 May 10;242(9):2005–2012. [PubMed] [Google Scholar]
  12. KOTAKI A., HARADA M., YAGI K. REACTION BETWEEN SULFHYDRYL COMPOUNDS AND 2,4,6-TRINITROBENZENE-1-SULFONIC ACID. J Biochem. 1964 May;55:553–561. [PubMed] [Google Scholar]
  13. Knauf P. A., Rothstein A. Chemical modification of membranes. II. Permeation paths for sulfhydryl agents. J Gen Physiol. 1971 Aug;58(2):211–223. doi: 10.1085/jgp.58.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kornfeld S. The effects of structural modifications on the biologic activity of human transferrin. Biochemistry. 1968 Mar;7(3):945–954. doi: 10.1021/bi00843a010. [DOI] [PubMed] [Google Scholar]
  15. LaCelle P. L., Rothsteto A. The passive permeability of the red blood cell in cations. J Gen Physiol. 1966 Sep;50(1):171–188. doi: 10.1085/jgp.50.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MADDY A. H. A FLUORESCENT LABEL FOR THE OUTER COMPONENTS OF THE PLASMA MEMBRANE. Biochim Biophys Acta. 1964 Sep 25;88:390–399. doi: 10.1016/0926-6577(64)90194-9. [DOI] [PubMed] [Google Scholar]
  17. Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
  18. Marinetti G. V., Gray G. M. A fluorescent chemical marker for the liver cell plasma membrane. Biochim Biophys Acta. 1967 Sep 9;135(4):580–590. doi: 10.1016/0005-2736(67)90090-9. [DOI] [PubMed] [Google Scholar]
  19. PAGANELLI C. V., SOLOMON A. K. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957 Nov 20;41(2):259–277. doi: 10.1085/jgp.41.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Passow H., Schnell K. F. Chemical modifiers of passive ion permeability of the erythrocyte membrane. Experientia. 1969 May 15;25(5):460–468. doi: 10.1007/BF01900757. [DOI] [PubMed] [Google Scholar]
  21. Philip G., Graves D. J. Dinitrophenylation of glycogen phosphorylase. I. Preparation and properties of active dinitrophenyl derivatives. Biochemistry. 1968 Jun;7(6):2093–2101. doi: 10.1021/bi00846a011. [DOI] [PubMed] [Google Scholar]
  22. REED C. F., SWISHER S. N., MARINETTI G. V., ENEN E. G. Studies of the lipids of the erythrocyte. I. Quantitative analysis of the lipids of normal human red blood cells. J Lab Clin Med. 1960 Aug;56:281–289. [PubMed] [Google Scholar]
  23. Rosenberg S. A., Guidotti G. The protein of human erythrocyte membranes. I. Preparation, solubilization, and partial characterization. J Biol Chem. 1968 Apr 25;243(8):1985–1992. [PubMed] [Google Scholar]
  24. Shapiro B., Kollmann G. The nature of the membrane injury in irradiated human erythrocytes. Radiat Res. 1968 May;34(2):335–346. [PubMed] [Google Scholar]
  25. Sutherland R. M., Pihl A. Repair of radiation damage to erythrocyte membranes. The reduction of radiation-induced disulfide groups. Radiat Res. 1968 May;34(2):300–314. [PubMed] [Google Scholar]
  26. Sutherland R. M., Rothstein A., Weed R. I. Erythrocyte membrane sulfhydryl groups and cation permeability. J Cell Physiol. 1967 Apr;69(2):185–198. doi: 10.1002/jcp.1040690209. [DOI] [PubMed] [Google Scholar]
  27. Sutherland R. M., Stannard J. N., Weed R. I. Involvement of sulphhydryl groups in radiation damage to the human erythrocyte membrane. Int J Radiat Biol Relat Stud Phys Chem Med. 1967;12(6):551–564. doi: 10.1080/09553006714551161. [DOI] [PubMed] [Google Scholar]
  28. VANSTEVENINCK J., WEED R. I., ROTHSTEIN A. LOCALIZATION OF ERYTHROCYTE MEMBRANE SULFHYDRYL GROUPS ESSENTIAL FOR GLUCOSE TRANSPORT. J Gen Physiol. 1965 Mar;48:617–632. doi: 10.1085/jgp.48.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  30. Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wieth J. O. Effect of some monovalent anions on chloride and sulphate permeability of human red cells. J Physiol. 1970 May;207(3):581–609. doi: 10.1113/jphysiol.1970.sp009082. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES