Abstract
The mechanical properties, as revealed by minute length changes, of isolated twitch fibers of the frog have been studied at rest and during low-level activation. Resting tension is 77 ± 23 mN/cm2 (mean ± SD) at 2.2 µm sarcomere length.1 The slope of the tension curve (ΔP/ΔL) recorded during a constant-speed length change of a resting fiber is initially large. At length changes exceeding about 0.18 % of the initial length of the fiber ΔP/ΔL falls abruptly and remains close to zero during the rest of the length change. The amplitude of the tension response is reduced after a length change and returns to normal in about 3 min. Hypertonic sucrose-Ringer solutions cause a small, maintained rise in tension up to 1.4–1.6 times normal osmotic strength. Higher sucrose concentrations cause relatively large, transient tension responses. The initial ΔP/ΔL is increased in moderately hypertonic solutions; it may be reduced in more strongly hypertonic solutions. Elevated [K]o (range 10–17.5 mM) causes a marked reduction in ΔP/ΔL. In this range of [K]o the reduction is not accompanied by changes in resting tension. Addition of 1–1.5 mM caffeine to the Ringer solution affects the resting tension very little but also reduces ΔP/ΔL. The results suggest that stiffness and tension development are not related in a simple way.
Full Text
The Full Text of this article is available as a PDF (939.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AXELSSON J., THESLEFF S. Activation of the contractile mechanism in striated muscle. Acta Physiol Scand. 1958 Oct 28;44(1):55–66. doi: 10.1111/j.1748-1716.1958.tb01608.x. [DOI] [PubMed] [Google Scholar]
- BUCHTHAL F., ROSENFALCK P., SVENSMARK O. Mechanical and chemical events in muscle contraction. Physiol Rev. 1956 Oct;36(4):503–538. doi: 10.1152/physrev.1956.36.4.503. [DOI] [PubMed] [Google Scholar]
- Edman K. A. The rising phase of the active state in single skeletal muscle fibres of the frog. Acta Physiol Scand. 1970 Jun;79(2):167–173. doi: 10.1111/j.1748-1716.1970.tb04717.x. [DOI] [PubMed] [Google Scholar]
- Fields R. W., Faber J. J. Biophysical analysis of the mechanical properties of the sarcolemma. Can J Physiol Pharmacol. 1970 Jun;48(6):394–404. doi: 10.1139/y70-062. [DOI] [PubMed] [Google Scholar]
- Gordon A. M., Godt R. E. Some effects of hypertonic solutions on contraction and excitation-contraction coupling in frog skeletal muscles. J Gen Physiol. 1970 Feb;55(2):254–275. doi: 10.1085/jgp.55.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon A. M., Huxley A. F., Julian F. J. Tension development in highly stretched vertebrate muscle fibres. J Physiol. 1966 May;184(1):143–169. doi: 10.1113/jphysiol.1966.sp007908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HILL A. V. Is relaxation an active process? Proc R Soc Lond B Biol Sci. 1949 Oct;136(884):420–435. doi: 10.1098/rspb.1949.0034. [DOI] [PubMed] [Google Scholar]
- HILL A. V. The development of the active state of muscle during the latent period. Proc R Soc Lond B Biol Sci. 1950 Oct 13;137(888):320–329. doi: 10.1098/rspb.1950.0043. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill D. K. Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J Physiol. 1968 Dec;199(3):637–684. doi: 10.1113/jphysiol.1968.sp008672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JEWELL B. R., WILKIE D. R. An analysis of the mechanical components in frog's striated muscle. J Physiol. 1958 Oct 31;143(3):515–540. doi: 10.1113/jphysiol.1958.sp006075. [DOI] [PMC free article] [PubMed] [Google Scholar]