Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Oct 1;58(4):351–371. doi: 10.1085/jgp.58.4.351

Rhodopsin and Porphyropsin Fields In the Adult Bullfrog Retina

Tom E Reuter 1, Richard H White 1, George Wald 1
PMCID: PMC2226032  PMID: 5315587

Abstract

Though it had been supposed earlier that the bullfrog undergoes a virtually complete metamorphosis of visual systems from vitamin A2 and porphyropsin in the tadpole to vitamin A1 and rhodopsin in the adult, the present observations show that the retina of the adult frog may contain as much as 30–40% porphyropsin, all of it segregated in the dorsal zone. The most dorsal quarter of the adult retina may contain 81–89% porphyropsin mixed with a minor amount of rhodopsin; the ventral half contains only rhodopsin. Further, the dorsal zone contains a two to three times higher concentration of visual pigments than the ventral retina. The pigment epithelium underlying the retina contains a corresponding distribution of vitamins A1 and A2, predominantly vitamin A2 in the dorsal pigment epithelium, exclusively vitamin A1 in the ventral zone. The retina accepts whatever vitamin A the pigment epithelium provides it with, and turns it into the corresponding visual pigment. Thus, a piece of light-adapted dorsal retina laid back on ventral pigment epithelium regenerates rhodopsin, whereas a piece of light-adapted ventral retina laid back on dorsal pigment epithelium regenerates predominantly porphyropsin. Vitamin A2 must be made from vitamin A1, by dehydrogenation at the 3,4-bond in the ring. This conversion must occur in the pigment epithelium, presumably through the action of a vitamin A-3,4-dehydrogenase. The essential change at metamorphosis is to make much less of this dehydrogenase, and to sequester it in the dorsal pigment epithelium. Some adult bullfrogs, perhaps characteristically taken in the summer, contain very little porphyropsin—only perhaps 5%—still sequestered in the dorsal retina. The gradient of light over the retinal surface has little if any effect on this distribution. The greater density of visual pigments in the dorsal retina, and perhaps also—although this is less clear—the presence of porphyropsin in this zone, has some ecological importance in increasing the retinal sensitivity to the dimmer and, on occasion, redder light received from below.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIDGES C. D. EFFECT OF SEASON AND ENVIRONMENT ON THE RETINAL PIGMENTS OF TWO FISHES. Nature. 1964 Jul 11;203:191–192. doi: 10.1038/203191a0. [DOI] [PubMed] [Google Scholar]
  2. BROWN P. K., GIBBONS I. R., WALD G. THE VISUAL CELLS AND VISUAL PIGMENT OF THE MUDPUPPY, NECTURUS. J Cell Biol. 1963 Oct;19:79–106. doi: 10.1083/jcb.19.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beatty D. D. Visual pigment changes in juvenile kokanee salmon in response to thyroid hormones. Vision Res. 1969 Aug;9(8):855–864. doi: 10.1016/0042-6989(69)90093-5. [DOI] [PubMed] [Google Scholar]
  4. Bridges C. D. Absorption properties, interconversions, and environmental adaptation of pigments from fish photoreceptors. Cold Spring Harb Symp Quant Biol. 1965;30:317–334. doi: 10.1101/sqb.1965.030.01.033. [DOI] [PubMed] [Google Scholar]
  5. Bridges C. D. Reversible visual pigment changes in tadpoles exposed to light and darkness. Nature. 1970 Aug 29;227(5261):956–957. doi: 10.1038/227956a0. [DOI] [PubMed] [Google Scholar]
  6. Bridges C. D. Spectroscopic properties of porphyropsins. Vision Res. 1967 May;7(5):349–369. doi: 10.1016/0042-6989(67)90044-2. [DOI] [PubMed] [Google Scholar]
  7. Bridges C. D. Visual pigments in a fish exposed to different light-environments. Nature. 1965 Jun 12;206(989):1161–1162. doi: 10.1038/2061161a0. [DOI] [PubMed] [Google Scholar]
  8. Bridges C. D., Yoshikami S. The rhodopsin-porphyropsin system in freshwater fishes. 1. Effects of age and photic environment. Vision Res. 1970 Dec;10(12):1315–1332. doi: 10.1016/0042-6989(70)90084-2. [DOI] [PubMed] [Google Scholar]
  9. Bridges C. D., Yoshikami S. The rhodopsin-porphyropsin system in freshwater fishes. 2. Turnover and interconversion of visual pigment prosthetic groups in light and darkness: role of the pigment epithelium. Vision Res. 1970 Dec;10(12):1333–1345. doi: 10.1016/0042-6989(70)90085-4. [DOI] [PubMed] [Google Scholar]
  10. Brown K. T. A linear area centralis extending across the turtle retina and stabilized to t horizon by non-visual cues. Vision Res. 1969 Sep;9(9):1053–1062. doi: 10.1016/0042-6989(69)90047-9. [DOI] [PubMed] [Google Scholar]
  11. CRESCITELLI F. The natural history of visual pigments. Ann N Y Acad Sci. 1959 Nov 12;74(2):230–255. doi: 10.1111/j.1749-6632.1958.tb39548.x. [DOI] [PubMed] [Google Scholar]
  12. DARTNALL H. J. A. The interpretation of spectral sensitivity curves. Br Med Bull. 1953;9(1):24–30. doi: 10.1093/oxfordjournals.bmb.a074302. [DOI] [PubMed] [Google Scholar]
  13. DARTNALL H. J. Further observations on the visual pigments of the clawed toad, Xenopus laevis. J Physiol. 1956 Nov 28;134(2):327–338. doi: 10.1113/jphysiol.1956.sp005646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dartnall H. J., Lythgoe J. N. The spectral clustering of visual pigments. Vision Res. 1965 Apr;5(3):81–100. doi: 10.1016/0042-6989(65)90057-x. [DOI] [PubMed] [Google Scholar]
  15. Dartnall H. J. The visual pigment of the green rods. Vision Res. 1967 Jan;7(1):1–16. doi: 10.1016/0042-6989(67)90022-3. [DOI] [PubMed] [Google Scholar]
  16. HUBBARD R., COLMAN A. D. Vitamin-A content of the frog eye during light and dark adaptation. Science. 1959 Oct 16;130(3381):977–978. doi: 10.1126/science.130.3381.977. [DOI] [PubMed] [Google Scholar]
  17. HUBBARD R., WALD G. Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J Gen Physiol. 1952 Nov;36(2):269–315. doi: 10.1085/jgp.36.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KENNEDY D. A comparative study on spectral sensitivity in tadpoles and adult frogs. J Cell Physiol. 1957 Aug;50(1):155–165. doi: 10.1002/jcp.1030500112. [DOI] [PubMed] [Google Scholar]
  19. Liebman P. A., Entine G. Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 1968 Jul;8(7):761–775. doi: 10.1016/0042-6989(68)90128-4. [DOI] [PubMed] [Google Scholar]
  20. Liebman P. A., Granda A. M. Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia mydas. Vision Res. 1971 Feb;11(2):105–114. doi: 10.1016/0042-6989(71)90227-6. [DOI] [PubMed] [Google Scholar]
  21. Luria S. M., Kinney J. A. Underwater vision. Science. 1970 Mar 13;167(3924):1454–1461. doi: 10.1126/science.167.3924.1454. [DOI] [PubMed] [Google Scholar]
  22. Muntz W. R., Reuter T. Visual pigments and spectral sensitivity in Rana temporaria and other European tadpoles. Vision Res. 1966 Dec;6(12):601–618. doi: 10.1016/0042-6989(66)90072-1. [DOI] [PubMed] [Google Scholar]
  23. Munz F. W., Beatty D. D. A critical analysis of the visual pigments of salmon and trout. Vision Res. 1965 Jan;5(1):1–17. doi: 10.1016/0042-6989(65)90071-4. [DOI] [PubMed] [Google Scholar]
  24. OHTSU K., NAITO K., WILT F. H. METABOLIC BASIS OF VISUAL PIGMENT CONVERSION IN METAMORPHOSING RANA CATESBEIANA. Dev Biol. 1964 Oct;10:216–232. doi: 10.1016/0012-1606(64)90042-9. [DOI] [PubMed] [Google Scholar]
  25. Schwanzara S. A. The visual pigments of freshwater fishes. Vision Res. 1967 Mar;7(3):121–148. doi: 10.1016/0042-6989(67)90079-x. [DOI] [PubMed] [Google Scholar]
  26. WALD G., BROWN P. K., SMITH P. H. Cyanopsin, a new pigment of cone vision. Science. 1953 Oct 30;118(3070):505–508. doi: 10.1126/science.118.3070.505. [DOI] [PubMed] [Google Scholar]
  27. WALD G., BROWN P. K. The molar extinction of rhodopsin. J Gen Physiol. 1953 Nov 20;37(2):189–200. doi: 10.1085/jgp.37.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WALD G. The biochemistry of vision. Annu Rev Biochem. 1953;22:497–526. doi: 10.1146/annurev.bi.22.070153.002433. [DOI] [PubMed] [Google Scholar]
  29. WALD G. The significance of vertebrate metamorphosis. Science. 1958 Dec 12;128(3337):1481–1490. doi: 10.1126/science.128.3337.1481. [DOI] [PubMed] [Google Scholar]
  30. WALD G. Vision. Fed Proc. 1953 Jun;12(2):606–611. [PubMed] [Google Scholar]
  31. WALD G. Visual pigments and vitamins A of the clawed toad, Xenopus laevis. Nature. 1955 Feb 26;175(4452):390–391. doi: 10.1038/175390a0. [DOI] [PubMed] [Google Scholar]
  32. Wald G. Molecular basis of visual excitation. Science. 1968 Oct 11;162(3850):230–239. doi: 10.1126/science.162.3850.230. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES