Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Nov 1;58(5):483–510. doi: 10.1085/jgp.58.5.483

High Potassium and Low Sodium Contractures in Sheep Cardiac Muscle

W R Gibbons 1, H A Fozzard 1
PMCID: PMC2226041  PMID: 5122370

Abstract

Contractures develop in sheep atrial trabeculae if Tyrode's solution is rapidly replaced by a solution containing elevated potassium, reduced sodium, or both. Two phases of the contracture can be identified on the basis of differences in physiological behavior: a rapid and transient phase that predominates during the first few seconds of the contracture, and a slowly developed phase that is responsible for the steady level of tension reached later in the contracture. The transient phase is particularly prominent if the muscle is stimulated rapidly before the contracture, and reduced or absent if the muscle is not stimulated or if calcium is not present before the contracture. Recovery of the transient phase after a contracture parallels the recovery of twitches. This transient phase appears to reflect the depolarization-induced release of activator (calcium) from an internal store, possibly the same store that is involved in the normal contraction. The slowly developed tension is dependent on the contracture solution used, and is decreased if the calcium concentration is reduced or if the sodium concentration is increased. It does not depend on conditions before the contracture and does not require time to recover. This phase of the contracture may be due to entry of calcium from the extracellular solution.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoni H., Jacob R., Kaufmann R. Mechanische Reaktionen des Frosch- und Säugetiermyokards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflugers Arch. 1969;306(1):33–57. doi: 10.1007/BF00586610. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beeler G. W., Jr, Reuter H. Membrane calcium current in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):191–209. doi: 10.1113/jphysiol.1970.sp009056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beeler G. W., Jr, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):211–229. doi: 10.1113/jphysiol.1970.sp009057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dudel J., Peper K., Rüdel R., Trautwein W. The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):197–212. doi: 10.1007/BF01844100. [DOI] [PubMed] [Google Scholar]
  6. Fozzard H. A., Hellman D. C. Relationship between membrane voltage and tension in voltage-clamped cardiac purkinje fibres. Nature. 1968 May 11;218(5141):588–589. doi: 10.1038/218588a0. [DOI] [PubMed] [Google Scholar]
  7. Fozzard H. A., Sleator W. Membrane ionic conductances during rest and activity in guinea pig atrial muscle. Am J Physiol. 1967 Apr;212(4):945–952. doi: 10.1152/ajplegacy.1967.212.4.945. [DOI] [PubMed] [Google Scholar]
  8. Gibbons W. R., Fozzard H. A. Voltage dependence and time dependence of contraction in sheep cardiac Purkinje fibers. Circ Res. 1971 Apr;28(4):446–460. doi: 10.1161/01.res.28.4.446. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HUTTER O. F., NOBLE D. Anion conductance of cardiac muscle. J Physiol. 1961 Jul;157:335–350. doi: 10.1113/jphysiol.1961.sp006726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hellam D. C., Podolsky R. J. Force measurements in skinned muscle fibres. J Physiol. 1969 Feb;200(3):807–819. doi: 10.1113/jphysiol.1969.sp008723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jewell B. R., Blinks J. R. Drugs and the mechanical properties of heart muscle. Annu Rev Pharmacol. 1968;8:113–130. doi: 10.1146/annurev.pa.08.040168.000553. [DOI] [PubMed] [Google Scholar]
  13. KOCH-WESER J., BLINKS J. R. THE INFLUENCE OF THE INTERVAL BETWEEN BEATS ON MYOCARDIAL CONTRACTILITY. Pharmacol Rev. 1963 Sep;15:601–652. [PubMed] [Google Scholar]
  14. Kavaler F., Morad M. Paradoxical effects of epinephrine on excitation-contraction coupling in cardiac muscle. Circ Res. 1966 May;18(5):492–501. doi: 10.1161/01.res.18.5.492. [DOI] [PubMed] [Google Scholar]
  15. LUTTGAU H. C., NIEDERGERKE R. The antagonism between Ca and Na ions on the frog's heart. J Physiol. 1958 Oct 31;143(3):486–505. doi: 10.1113/jphysiol.1958.sp006073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lamb J. F., McGuigan J. A. Contractures in a superfused frog's ventricle. J Physiol. 1966 Oct;186(2):261–283. doi: 10.1113/jphysiol.1966.sp008033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee Y. C., Richman H. G., Visscher M. B. [Ca++] and [K+] interrelations influencing mechanical and electrical events in cardiac activity. Am J Physiol. 1966 Mar;210(3):499–504. doi: 10.1152/ajplegacy.1966.210.3.499. [DOI] [PubMed] [Google Scholar]
  18. Little G. R., Sleator W. W. Calcium exchange and contraction strength of guinea pig atrium in normal and hypertonic media. J Gen Physiol. 1969 Oct;54(4):494–511. doi: 10.1085/jgp.54.4.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McGuigan J. A. Tension in ventricular fibres during a voltage clamp. Helv Physiol Pharmacol Acta. 1968;26(3):CR362–CR363. [PubMed] [Google Scholar]
  20. Morad M. Contracture and catecholamines in mammalian myocardium. Science. 1969 Oct 24;166(3904):505–506. doi: 10.1126/science.166.3904.505. [DOI] [PubMed] [Google Scholar]
  21. Morad M., Trautwein W. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;299(1):66–82. doi: 10.1007/BF00362542. [DOI] [PubMed] [Google Scholar]
  22. NIEDERGERKE R. MOVEMENTS OF CA IN FROG HEART VENTRICLES AT REST AND DURING CONTRACTURES. J Physiol. 1963 Jul;167:515–550. doi: 10.1113/jphysiol.1963.sp007166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NIEDERGERKE R. Movements of Ca in beating ventricles of the frog heart. J Physiol. 1963 Jul;167:551–580. doi: 10.1113/jphysiol.1963.sp007167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. NIEDERGERKE R. The potassium chloride contracture of the heart and its modification by calcium. J Physiol. 1956 Dec 28;134(3):584–599. doi: 10.1113/jphysiol.1956.sp005667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scholz H. Uber die Wirkung von Calcium and Natrium auf die Kaliumkontraktur isolierter Meerschweinchenvorhöfe. Pflugers Arch. 1969;308(4):315–332. doi: 10.1007/BF00587183. [DOI] [PubMed] [Google Scholar]
  27. UENO A., MATANO M., NAKAZAWA Y. AN ANALYSIS OF THE POSITIVE INOTROPIC EFFECT OF ANAPHYLAXIS WITH POTASSIUM CONTRACTURE IN GUINEA PIG ATRIA, IN CONNECTION WITH THOSE OF INOTROPIC AGENTS. Jpn J Pharmacol. 1965 Mar;15:1–9. doi: 10.1254/jjp.15.1. [DOI] [PubMed] [Google Scholar]
  28. WINEGRAD S., SHANES A. M. Calcium flux and contractility in guinea pig atria. J Gen Physiol. 1962 Jan;45:371–394. doi: 10.1085/jgp.45.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wood E. H., Heppner R. L., Weidmann S. Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res. 1969 Mar;24(3):409–445. doi: 10.1161/01.res.24.3.409. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES