Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1971 Dec 1;58(6):667–687. doi: 10.1085/jgp.58.6.667

Divalent Ions and the Surface Potential of Charged Phospholipid Membranes

S G A McLaughlin 1, G Szabo 1, G Eisenman 1
PMCID: PMC2226047  PMID: 5120393

Abstract

Phospholipid bilayer membranes were bathed in a decimolar solution of monovalent ions, and the conductance produced by neutral carriers of these monovalent cations and anions was used to assess the electric potential at the surface of the membrane. When the bilayers were formed from a neutral lipid, phosphatidylethanolamine, the addition of alkaline earth cations produced no detectable surface potential, indicating that little or no binding occurs to the polar head group with these ions. When the bilayers were formed from a negatively charged lipid, phosphatidylserine, the addition of Sr and Ba decreased the magnitude of the surface potential as predicted by the theory of the diffuse double layer. In particular, the potential decreased 27 mv for a 10-fold increase in concentration in the millimolar-decimolar range. A 10-fold increase in the Ca or Mg concentration also produced a 27 mv decrease in potential in this region, which was again due to screening, but it was necessary to invoke some specific binding to account for the observation that these cations were effective at a lower concentration than Ba or Sr. It is suggested that the ability of the alkaline earth cations to shift the conductance-voltage curves of a nerve along the voltage axis by 20–26 mv for a 10-fold increase in concentration may be due to essentially a screening rather than a binding phenomenon.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMSON M. B., KATZMAN R., WILSON C. E., GREGOR H. P. IONIC PROPERTIES OF AQUEOUS DISPERSIONS OF PHOSPHATIDIC ACID. J Biol Chem. 1964 Dec;239:4066–4072. [PubMed] [Google Scholar]
  2. Abramson M. B., Colacicco G., Curci R., Rapport M. M. Ionic properties of acidic lipids. Phosphatidylinositol. Biochemistry. 1968 May;7(5):1692–1698. doi: 10.1021/bi00845a011. [DOI] [PubMed] [Google Scholar]
  3. Blaustein M. P., Goldman D. E. The action of certain polyvalent cations on the voltage-clamped lobster axon. J Gen Physiol. 1968 Mar;51(3):279–291. doi: 10.1085/jgp.51.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camejo G., Villegas G. M., Barnola F. V., Villegas R. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid Dosidicus gigas. Biochim Biophys Acta. 1969;193(2):247–259. doi: 10.1016/0005-2736(69)90186-2. [DOI] [PubMed] [Google Scholar]
  5. Chandler W. K., Hodgkin A. L., Meves H. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J Physiol. 1965 Oct;180(4):821–836. doi: 10.1113/jphysiol.1965.sp007733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cole K. S. Zeta potential and discrete vs. uniform surface charges. Biophys J. 1969 Mar;9(3):465–469. doi: 10.1016/S0006-3495(69)86397-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Costantin L. L. The effect o f calcium on contraction and conductance thresholds in frog skeletal muscle. J Physiol. 1968 Mar;195(1):119–132. doi: 10.1113/jphysiol.1968.sp008450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilbert D. L., Ehrenstein G. Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys J. 1969 Mar;9(3):447–463. doi: 10.1016/S0006-3495(69)86396-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hauser H., Dawson R. M. The binding of calcium at lipid-water interfaces. Eur J Biochem. 1967 Mar;1(1):61–69. doi: 10.1007/978-3-662-25813-2_11. [DOI] [PubMed] [Google Scholar]
  10. Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968 Feb;51(2):221–236. doi: 10.1085/jgp.51.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kilbourn B. T., Dunitz J. D., Pioda L. A., Simon W. Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties. J Mol Biol. 1967 Dec 28;30(3):559–563. doi: 10.1016/0022-2836(67)90370-1. [DOI] [PubMed] [Google Scholar]
  12. McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mozhayeva G. N., Naumov A. P. Effect of surface charge on the steady-state potassium conductance of nodal membrane. Nature. 1970 Oct 10;228(5267):164–165. doi: 10.1038/228164a0. [DOI] [PubMed] [Google Scholar]
  14. Neumcke B. Ion flux across lipid bilayer membranes with charged surfaces. Biophysik. 1970;6(3):231–240. doi: 10.1007/BF01189084. [DOI] [PubMed] [Google Scholar]
  15. Papahadjopoulos D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta. 1968 Sep 17;163(2):240–254. doi: 10.1016/0005-2736(68)90103-x. [DOI] [PubMed] [Google Scholar]
  16. Vanderkooi J., Martonosi A. Sarcoplasmic reticulum. 8. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes. Arch Biochem Biophys. 1969 Aug;133(1):153–163. doi: 10.1016/0003-9861(69)90499-8. [DOI] [PubMed] [Google Scholar]
  17. van DEENEN L., HOUTSMULLERUM, de HASS G., MULDER E. Monomolecular layers of synthetic phosphatides. J Pharm Pharmacol. 1962 Jul;14:429–444. doi: 10.1111/j.2042-7158.1962.tb11121.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES