Abstract
Two different methods were used to determine the relative permeability and the voltage-dependent conductance of several different cations in excitability-inducing material (EIM)-doped lipid bilayers. In one method, the conductances of individual channels were measured for Li, Na, K, Cs, NH4, and Ca, and in the other method biionic potentials of a membrane with many channels were measured for Li, Na, K, Cs, and Rb. The experimental results for the two methods are in agreement. The relative permeabilities are proportional to the ionic mobilities in free aqueous solution. The voltage dependence of the conductance is the same for all cations measured.
Full Text
The Full Text of this article is available as a PDF (621.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bean R. C., Shepherd W. C., Chan H., Eichner J. Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol. 1969 Jun;53(6):741–757. doi: 10.1085/jgp.53.6.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenstein G., Gilbert D. L. Slow changes of potassium permeability in the squid giant axon. Biophys J. 1966 Sep;6(5):553–566. doi: 10.1016/S0006-3495(66)86677-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenstein G., Lecar H., Nossal R. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol. 1970 Jan;55(1):119–133. doi: 10.1085/jgp.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenman G., Sandblom J. P., Walker J. L., Jr Membrane structure and ion permeation. Study of ion exchange membrane structure and function is relevant to analysis of biological ion permeation. Science. 1967 Feb 24;155(3765):965–974. doi: 10.1126/science.155.3765.965. [DOI] [PubMed] [Google Scholar]
- Hille B. The hydration of sodium ions crossing the nerve membrane. Proc Natl Acad Sci U S A. 1971 Feb;68(2):280–282. doi: 10.1073/pnas.68.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushnir L. D. Studies on a material which induces electrical excitability in bimolecular lipid membranes. I. Production, isolation, gross identification and assay. Biochim Biophys Acta. 1968 Mar 1;150(2):285–299. doi: 10.1016/0005-2736(68)90171-5. [DOI] [PubMed] [Google Scholar]
- Mueller P., Rudin D. O. Induced excitability in reconstituted cell membrane structure. J Theor Biol. 1963 May;4(3):268–280. doi: 10.1016/0022-5193(63)90006-7. [DOI] [PubMed] [Google Scholar]
- Mueller P., Rudin D. O. Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol. 1968 Feb;18(2):222–258. doi: 10.1016/0022-5193(68)90163-x. [DOI] [PubMed] [Google Scholar]