Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Jul 1;60(1):46–57. doi: 10.1085/jgp.60.1.46

Cation Transport in Dog Red Cells

A Romualdez 1, R I Sha'afi 1, Y Lange 1, A K Solomon 1
PMCID: PMC2226054  PMID: 5042023

Abstract

Studies have been made on the cation transport system of the dog red cell, a system of particular interest because it has been shown that there is a marked dependence of cation fluxes on the cell volume. We have found that a 10% decrease in cell volume causes a large increase in 1 hr uptake of 24Na as well as a considerable inhibition of 42K uptake. This effect cannot be produced by a difference in medium osmolality but rather requires the cell volume to change. Dog red cell uptake of 24Na is not inhibited by iodoacetate. Phloretin inhibits 24Na uptake and lactate production, and virtually abolishes the volume effect on Na uptake. These several observations may be accounted for in terms of a working hypothesis which presupposes a cation carrier complex which pumps K into and Na out of cells of normal volume. When the cells are shrunken the carrier specificity shifts to an external Na-specific mode and there is a large increase in 24Na uptake, driven by the inwardly directed Na electrochemical potential gradient.

Full Text

The Full Text of this article is available as a PDF (656.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERNSTEIN R. E. Potassium and sodium balance in mammalian red cells. Science. 1954 Sep 17;120(3116):459–460. doi: 10.1126/science.120.3116.459. [DOI] [PubMed] [Google Scholar]
  2. Bach S. J. The effect of phloridzin on carbohydrate metabolism in vitro. Biochem J. 1939 May;33(5):802–810. doi: 10.1042/bj0330802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAN P. C., CALABRESE V., THEIL L. S. SPECIES DIFFERENCES IN THE EFFECT OF SODIUM AND POTASSIUM IONS ON THE ATPASE OF ERYTHROCYTE MEMBRANES. Biochim Biophys Acta. 1964 Mar 30;79:424–426. [PubMed] [Google Scholar]
  4. CRANE R. K. Intestinal absorption of sugars. Physiol Rev. 1960 Oct;40:789–825. doi: 10.1152/physrev.1960.40.4.789. [DOI] [PubMed] [Google Scholar]
  5. Davson H. The haemolytic action of potassium salts. J Physiol. 1942 Nov 30;101(3):265–283. doi: 10.1113/jphysiol.1942.sp003981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GILL T. J., 3rd, GOLD G. L., SOLOMON A. K. The kinetics of cardiac glycoside inhibition of potassium transport in human erythrocytes. J Gen Physiol. 1956 Nov 20;40(2):327–350. doi: 10.1085/jgp.40.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  8. Jay A. W., Burton A. C. Direct measurement of potential difference across the human red blood cell membrane. Biophys J. 1969 Feb;9(2):115–121. doi: 10.1016/S0006-3495(69)86372-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LEFEVRE P. G., MARSHALL J. K. The atachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. J Biol Chem. 1959 Nov;234:3022–3026. [PubMed] [Google Scholar]
  10. Lassen U. V., Sten-Knudsen O. Direct measurements of membrane potential and membrane resistance of human red cells. J Physiol. 1968 Apr;195(3):681–696. doi: 10.1113/jphysiol.1968.sp008482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. OLSON G. F. Optimal conditions for the enzymatic determination of L-lactic acid. Clin Chem. 1962 Feb;8:1–10. [PubMed] [Google Scholar]
  12. ROSENBERG T., WILBRANDT W. Strukturabhängigkeit der Hemmwirkung von Phlorizin und anderen Phloretinderivaten auf den Glukosetransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1957;15(1):168–176. [PubMed] [Google Scholar]
  13. Rich G. T., Sha'afi R. I., Barton T. C., Solomon A. K. Permeability studies on red cell membranes of dog, cat, and beef. J Gen Physiol. 1967 Nov;50(10):2391–2405. doi: 10.1085/jgp.50.10.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SOLOMON A. K. The permeability of the human erythrocyte to sodium and potassium. J Gen Physiol. 1952 May;36(1):57–110. doi: 10.1085/jgp.36.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SORENSON A. L., KIRSCHNER L. B., BARKER J. Sodium fluxes in the erythrocytes of swine, ox, and dog. J Gen Physiol. 1962 Jul;45:1031–1047. doi: 10.1085/jgp.45.6.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sha'afi R. I., Hajjar J. J. Sodium movement in high sodium feline red cells. J Gen Physiol. 1971 Jun;57(6):684–696. doi: 10.1085/jgp.57.6.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sha'afi R. I., Lieb W. R. Cation movements in the high sodium erythrocyte of the cat. J Gen Physiol. 1967 Jul;50(6):1751–1764. doi: 10.1085/jgp.50.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES