Abstract
We have determined the permeability properties of freshly isolated frog rod outer segments by observing their osmotic behavior in a simple continuous flow apparatus. Outer segments obtained by gently shaking a retina are sensitive but nonideal osmometers; a small restoring force prevents them from shrinking or swelling quite as much as expected for ideal behavior. We find that Na+, Cl-, No3 -, glycerol, acetate, and ammonium rapidly enter the outer segment, but K+, SO4 =, and melezitose appear impermeable. The Na flux is rectified; for concentration gradients in the physiological range, 2 x 109 Na+ ions/sec enter the outer segment, but we detect no efflux of Na+, under our conditions, when the gradient is reversed. Illumination of the outer segment produces a specific increase in the resistance to Na+ influx, but has no effect on the flux of other solutes. This light-dependent Na+ resistance increases linearly with the number of rhodopsin molecules bleached. We find that excitation of a single rhodopsin molecule produces a transient (∼1 sec) "photoresistance" which reduces the Na+ influx by about 1%, thus preventing the entry of about 107 Na+ ions. At considerably higher light levels, a stable afterimage resistance appears which reduces the Na influx by one-half when 106 rhodopsin molecules are bleached per rod. We have incorporated these findings into a model for the electrophysiological characteristics of the receptor.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arden G. B., Ernst W. The effect of ions on the photoresponses of pigeon cones. J Physiol. 1970 Dec;211(2):311–339. doi: 10.1113/jphysiol.1970.sp009281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARLOW H. B., SPARROCK J. M. THE ROLE OF AFTERIMAGES IN DARK ADAPTATION. Science. 1964 Jun 12;144(3624):1309–1314. doi: 10.1126/science.144.3624.1309. [DOI] [PubMed] [Google Scholar]
- BRINDLEY G. S. The discrimination of after-images. J Physiol. 1959 Jun 23;147(1):194–203. doi: 10.1113/jphysiol.1959.sp006234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baylor D. A., O'Bryan P. M. Electrical signaling in vertebrate photoreceptors. Fed Proc. 1971 Jan-Feb;30(1):79–83. [PubMed] [Google Scholar]
- Blaurock A. E., Wilkins M. H. Structure of frog photoreceptor membranes. Nature. 1969 Aug 30;223(5209):906–909. doi: 10.1038/223906a0. [DOI] [PubMed] [Google Scholar]
- Bonting S. L., Bangham A. D. On the biochemical mechanism of the visual process. Exp Eye Res. 1967 Oct;6(4):400–413. doi: 10.1016/s0014-4835(67)80015-0. [DOI] [PubMed] [Google Scholar]
- Bortoff A. Localization of slow potential responses in the Necturus retina. Vision Res. 1964 Dec;4(11):627–635. doi: 10.1016/0042-6989(64)90048-3. [DOI] [PubMed] [Google Scholar]
- Bowmaker J. K. Sodium movements from frog rod outer segments. Vision Res. 1970 Jul;10(7):601–604. doi: 10.1016/0042-6989(70)90054-4. [DOI] [PubMed] [Google Scholar]
- Bownds D., Gaide-Huguenin A. C. Rhodopsin content of frog photoreceptor outer segments. Nature. 1970 Feb 28;225(5235):870–872. doi: 10.1038/225870a0. [DOI] [PubMed] [Google Scholar]
- Bridges C. D. Molar absorbance coefficient of rhodopsin. Nature. 1970 Sep 19;227(5264):1258–1259. doi: 10.1038/2271258a0. [DOI] [PubMed] [Google Scholar]
- Brierley G. P., Fleischmen D., Hughes S. D., Hunter G. R., McConnell D. G. On the permeability of isolated bovine retinal outer segment fragments. Biochim Biophys Acta. 1968 Aug;163(1):117–120. doi: 10.1016/0005-2736(68)90041-2. [DOI] [PubMed] [Google Scholar]
- CURTIS A. S. Cell contact and adhesion. Biol Rev Camb Philos Soc. 1962 Feb;37:82–129. doi: 10.1111/j.1469-185x.1962.tb01605.x. [DOI] [PubMed] [Google Scholar]
- Clark A. W., Branton D. Fracture faces in frozen outer segments from the guinea pig retina. Z Zellforsch Mikrosk Anat. 1968;91(4):586–603. doi: 10.1007/BF00455276. [DOI] [PubMed] [Google Scholar]
- Frank R. N., Goldsmith T. H. Effects of cardiac glycosides on electrical activity in the isolated retina of the frog. J Gen Physiol. 1967 Jul;50(6):1585–1606. doi: 10.1085/jgp.50.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUBBARD R., BROWN P. K., KROPF A. Vertebrate lumi- and meta-rhodopsins. Nature. 1959 Feb 14;183(4659):442–446. [PubMed] [Google Scholar]
- HUBBARD R. The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex. J Gen Physiol. 1954 Jan 20;37(3):381–399. doi: 10.1085/jgp.37.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagins W. A., Penn R. D., Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970 May;10(5):380–412. doi: 10.1016/S0006-3495(70)86308-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heller J., Ostwald T. J., Bok D. The osmotic behavior of rod photoreceptor outer segment discs. J Cell Biol. 1971 Mar;48(3):633–649. doi: 10.1083/jcb.48.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liebman P. A., Entine G. Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 1968 Jul;8(7):761–775. doi: 10.1016/0042-6989(68)90128-4. [DOI] [PubMed] [Google Scholar]
- MATTHEWS R. G., HUBBARD R., BROWN P. K., WALD G. TAUTOMERIC FORMS OF METARHODOPSIN. J Gen Physiol. 1963 Nov;47:215–240. doi: 10.1085/jgp.47.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami M., Pak W. L. Intracellularly recorded early receptor potential of the vertebrate photoreceptors. Vision Res. 1970 Oct;10(10):965–975. doi: 10.1016/0042-6989(70)90074-x. [DOI] [PubMed] [Google Scholar]
- Penn R. D., Hagins W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969 Jul 12;223(5202):201–204. doi: 10.1038/223201a0. [DOI] [PubMed] [Google Scholar]
- RUSHTON W. A. Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J Physiol. 1961 Apr;156:193–205. doi: 10.1113/jphysiol.1961.sp006668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson J. D. Granulo-fibrillar and globular substructure in unit membranes. Ann N Y Acad Sci. 1966 Jul 14;137(2):421–440. doi: 10.1111/j.1749-6632.1966.tb50174.x. [DOI] [PubMed] [Google Scholar]
- SIDMAN R. L. The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J Biophys Biochem Cytol. 1957 Jan 25;3(1):15–30. doi: 10.1083/jcb.3.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sillman A. J., Ito H., Tomita T. Studies on the mass receptor potential of the isolated frog retina. II. On the basis of the ionic mechanism. Vision Res. 1969 Dec;9(12):1443–1451. doi: 10.1016/0042-6989(69)90060-1. [DOI] [PubMed] [Google Scholar]
- Tomita T. Electrical activity of vertebrate photoreceptors. Q Rev Biophys. 1970 May;3(2):179–222. doi: 10.1017/s0033583500004571. [DOI] [PubMed] [Google Scholar]
- Toyoda J., Hashimoto H., Anno H., Tomita T. The rod response in the frog and studies by intracellular recording. Vision Res. 1970 Nov;10(11):1093–1100. doi: 10.1016/0042-6989(70)90026-x. [DOI] [PubMed] [Google Scholar]
- Toyoda J., Nosaki H., Tomita T. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 1969 Apr;9(4):453–463. doi: 10.1016/0042-6989(69)90134-5. [DOI] [PubMed] [Google Scholar]
- Weale R. A. On the birefringence of rods and cones. Pflugers Arch. 1971;329(3):244–257. doi: 10.1007/BF00586618. [DOI] [PubMed] [Google Scholar]