Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Aug 1;60(2):202–220. doi: 10.1085/jgp.60.2.202

The Effect of Shortening on the Time-Course of Active State Decay

Kay L Briden 1, Norman R Alpert 1
PMCID: PMC2226064  PMID: 4538059

Abstract

The active state describes the force developed in a muscle when the contractile elements are neither lengthening nor shortening. Recently it was suggested that perturbations used to measure the active state also alter the time-course of the active state. The present research was undertaken to assess quantitatively the effect of two such perturbations, isotonic shortening and quick release, on the active state in frog sartorius muscle. Methods were developed which allowed the determination of active state points following periods of controlled isotonic shortening or quick release early in the contraction cycle. All experiments were carried out within the plateau region of the length-tension curve. Both isotonic shortening and quick release altered the active state decay. The active state force decreased as the extent of shortening or release was increased. For each 0.1 mm of isotonic shortening there was a 2% decrease in active state force. Quick release produced a larger decrement. From this data we conclude that the time-course of active state can be measured only in relative terms because it is altered by the motion which takes place in the contractile machine while the active state is being measured. This finding helps to resolve paradoxes in the literature relating to the time-course of the active state, calculated and experimentally determined isometric tetanic myograms, and the heat of shortening.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUBERT X., ROQUET M. L., VAN DER ELST J. The tension-length diagram of the frog's sartorius muscle. Arch Int Physiol. 1951 Jul;59(2):239–241. doi: 10.3109/13813455109145002. [DOI] [PubMed] [Google Scholar]
  2. CARLSON F. D., HARDY D. J., WILKIE D. R. Total energy production and phosphocreatine hydrolysis in the isotonic twitch. J Gen Physiol. 1963 May;46:851–882. doi: 10.1085/jgp.46.5.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edman K. A., Kiessling A. The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibres of the frog. Acta Physiol Scand. 1971 Feb;81(2):182–196. doi: 10.1111/j.1748-1716.1971.tb04891.x. [DOI] [PubMed] [Google Scholar]
  4. Gordon A. M., Huxley A. F., Julian F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966 May;184(1):170–192. doi: 10.1113/jphysiol.1966.sp007909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HILL A. V. THE EFFECT OF TENSION IN PROLONGING THE ACTIVE STATE IN A TWITCH. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:589–595. doi: 10.1098/rspb.1964.0021. [DOI] [PubMed] [Google Scholar]
  6. HILL A. V. The abrupt transition from rest to activity in muscle. Proc R Soc Lond B Biol Sci. 1949 Oct;136(884):399–420. doi: 10.1098/rspb.1949.0033. [DOI] [PubMed] [Google Scholar]
  7. JEWELL B. R., WILKIE D. R. An analysis of the mechanical components in frog's striated muscle. J Physiol. 1958 Oct 31;143(3):515–540. doi: 10.1113/jphysiol.1958.sp006075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RITCHIE J. M. The effect of nitrate on the active state of muscle. J Physiol. 1954 Oct 28;126(1):155–168. doi: 10.1113/jphysiol.1954.sp005200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. RITCHIE J. M., WILKIE D. R. The dynamics of muscular contraction. J Physiol. 1958 Aug 29;143(1):104–113. doi: 10.1113/jphysiol.1958.sp006047. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES