Abstract
Intracellular responses from receptors and postsynaptic units have been recorded in the median ocellus of the dragonfly. The receptors respond to light with a graded, depolarizing potential and a single, tetrodotoxin-sensitive impulse at "on." The postsynaptic units (ocellar nerve dendrites) hyperpolarize during illumination and show a transient, depolarizing response at "off." The light-evoked slow potential responses of the postsynaptic units are not altered by the application of tetrodotoxin to the ocellus. It appears, therefore, that the graded receptor potential, which survives the application of tetrodotoxin, is responsible for mediating synaptic transmission in the ocellus. Comparison of pre- and postsynaptic slow potential activity shows (a) longer latencies in postsynaptic units by 5–20 msec, (b) enhanced photosensitivity in postsynaptic units by 1–2 log units, and (c) more transient responses in postsynaptic units. It is suggested that enhanced photosensitivity of postsynaptic activity is a result of summation of many receptors onto the postsynaptic elements, and that transients in the postsynaptic responses are related to the complex synaptic arrangements in the ocellar plexus to be described in the following paper.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alawi A. A., Pak W. L. On-transient of insect electroretinogram: its cellular origin. Science. 1971 Jun 4;172(3987):1055–1057. doi: 10.1126/science.172.3987.1055. [DOI] [PubMed] [Google Scholar]
- Arnett D. W. Receptive field organization of units in the first optic ganglion of diptera. Science. 1971 Sep 3;173(4000):929–931. doi: 10.1126/science.173.4000.929. [DOI] [PubMed] [Google Scholar]
- BROCK L. G., COOMBS J. S., ECCLES J. C. The recording of potentials from motoneurones with an intracellular electrode. J Physiol. 1952 Aug;117(4):431–460. doi: 10.1113/jphysiol.1952.sp004759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURKHARDT D., AUTRUM H. [The irradiation potential of single retina cells of Calliphora erythrocephala Meig]. Z Naturforsch B. 1960 Sep;15B:612–616. [PubMed] [Google Scholar]
- Baumann F. Slow and spike potentials recorded from retinula cells of the honeybee drone in response to light. J Gen Physiol. 1968 Dec;52(6):855–875. doi: 10.1085/jgp.52.6.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVoe R. D. Dual sensitivities of cells in wolf spider eyes at ultraviolet and visible wavelengths of light. J Gen Physiol. 1972 Mar;59(3):247–269. doi: 10.1085/jgp.59.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dowling J. E., Chappell R. L. Neural organization of the median ocellus of the dragonfly. II. Synaptic structure. J Gen Physiol. 1972 Aug;60(2):148–165. doi: 10.1085/jgp.60.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dowling J. E., Werblin F. S. Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J Neurophysiol. 1969 May;32(3):315–338. doi: 10.1152/jn.1969.32.3.315. [DOI] [PubMed] [Google Scholar]
- Eichenbaum D. M., Goldsmith T. H. Propertiesof intact photoreceptor cells lacking synapses. J Exp Zool. 1968 Sep;169(1):15–32. doi: 10.1002/jez.1401690104. [DOI] [PubMed] [Google Scholar]
- Elmqvist D., Feldman D. S. Spontaneous activity at a mammalian neuromuscular junction in tetrodotoxin. Acta Physiol Scand. 1965 Aug;64(4):475–476. doi: 10.1111/j.1748-1716.1965.tb04206.x. [DOI] [PubMed] [Google Scholar]
- FURUKAWA T., SASAOKA T., HOSOYA Y. Effects of tetrodotoxin on the neuromuscular junction. Jpn J Physiol. 1959 Jun 25;9(2):143–152. doi: 10.2170/jjphysiol.9.143. [DOI] [PubMed] [Google Scholar]
- Kaneko A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol. 1970 May;207(3):623–633. doi: 10.1113/jphysiol.1970.sp009084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. Release of acetylcholine from a nerve terminal by electric pulses of variable strength and duration. Nature. 1965 Sep 4;207(5001):1097–1098. doi: 10.1038/2071097a0. [DOI] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R., TERZUOLO C. A., WASHIZU Y. SEPARATION OF TRANSDUCER AND IMPULSE-GENERATING PROCESSES IN SENSORY RECEPTORS. Science. 1963 Nov 29;142(3596):1180–1181. doi: 10.1126/science.142.3596.1180. [DOI] [PubMed] [Google Scholar]
- MACNICHOL E. F., Jr, LOVE W. E. Electrical responses of the retinal nerve and optic ganglion of the squid. Science. 1960 Sep 16;132(3429):737–738. doi: 10.1126/science.132.3429.737. [DOI] [PubMed] [Google Scholar]
- McReynolds J. S., Gorman A. L. Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J Gen Physiol. 1970 Sep;56(3):376–391. doi: 10.1085/jgp.56.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. F., Dowling J. E. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol. 1970 May;33(3):323–341. doi: 10.1152/jn.1970.33.3.323. [DOI] [PubMed] [Google Scholar]
- Murakami M., Shigematsu Y. Duality of conduction mechanism in bipolar cells of the frog retina. Vision Res. 1970 Jan;10(1):1–10. doi: 10.1016/0042-6989(70)90057-x. [DOI] [PubMed] [Google Scholar]
- NAKA K. I., EGUCHI E. Spike potentials recorded from the insect photoreceptor. J Gen Physiol. 1962 Mar;45:663–680. doi: 10.1085/jgp.45.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKA K. I. Recording of retinal action potentials from single cells in the insect compound eye. J Gen Physiol. 1961 Jan;44:571–584. doi: 10.1085/jgp.44.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perrelet A., Baumann F. Evidence for extracellular space in the rhabdome of the honeybee drone eye. J Cell Biol. 1969 Mar;40(3):825–830. doi: 10.1083/jcb.40.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUCK P. Electrical responses of insect dorsal ocelli. J Cell Physiol. 1954 Dec;44(3):527–533. doi: 10.1002/jcp.1030440312. [DOI] [PubMed] [Google Scholar]
- RUCK P. Electrophysiology of the insect dorsal ocellus. I. Origin of the components of the electroretinogram. J Gen Physiol. 1961 Jan;44:605–627. doi: 10.1085/jgp.44.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHOLES J. H. DISCRETE SUBTHRESHOLD POTENTIALS FROM THE DIMLY LIT INSECT EYE. Nature. 1964 May 9;202:572–573. doi: 10.1038/202572a0. [DOI] [PubMed] [Google Scholar]
- Scholes J. Discontinuity of the excitation process in locust visual cells. Cold Spring Harb Symp Quant Biol. 1965;30:517–527. doi: 10.1101/sqb.1965.030.01.050. [DOI] [PubMed] [Google Scholar]
- Scholes J. The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik. 1969 Sep;6(4):149–162. doi: 10.1007/BF00274109. [DOI] [PubMed] [Google Scholar]
- Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]