Abstract
The nonlinear mechanical dynamics of glycerinated insect fibrillar flight muscle are investigated. The most striking nonlinearity reported previously, which often resulted in oscillatory work being limited to frequencies below those of natural flight, disappears if 5 mM or more orthophosphate is added to the experimental solutions. We show that two further asymmetric nonlinearities, which remain even though phosphate is present, are predicted by cross-bridge theory if one takes account of the expected distortion of attached cross-bridges as filament sliding becomes appreciable. Adenosine triphosphate and adenosine diphosphate have opponent effects upon the mechanical rate constants, suggesting a scheme for the sequential ordering of the events comprising the cross-bridge cycle.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott R. H., Mannherz G. H. Activation by ADP and the correlation between tension and ATPase activity in insect fibrillar muscle. Pflugers Arch. 1970;321(3):223–232. doi: 10.1007/BF00588443. [DOI] [PubMed] [Google Scholar]
- Ashhurst D. E. The Z-line in insect flight muscle. J Mol Biol. 1971 Jan 28;55(2):283–285. doi: 10.1016/0022-2836(71)90199-9. [DOI] [PubMed] [Google Scholar]
- Chaplain R. A., Tregear R. T. The mass of myosin per cross-bridge in insect fibrillar flight muscle. J Mol Biol. 1966 Nov 14;21(2):275–280. doi: 10.1016/0022-2836(66)90098-2. [DOI] [PubMed] [Google Scholar]
- Finlayson B., Lymn R. W., Taylor E. W. Studies on the kinetics of formation and dissociation of the actomyosin complex. Biochemistry. 1969 Mar;8(3):811–819. doi: 10.1021/bi00831a008. [DOI] [PubMed] [Google Scholar]
- Finlayson B., Taylor E. W. Hydrolysis of nucleoside triphosphates by myosin during the transient state. Biochemistry. 1969 Mar;8(3):802–810. doi: 10.1021/bi00831a007. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- JEWELL B. R., WILKIE D. R. An analysis of the mechanical components in frog's striated muscle. J Physiol. 1958 Oct 31;143(3):515–540. doi: 10.1113/jphysiol.1958.sp006075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julian F. J. Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle. Biophys J. 1969 Apr;9(4):547–570. doi: 10.1016/S0006-3495(69)86403-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry. 1970 Jul 21;9(15):2975–2983. doi: 10.1021/bi00817a007. [DOI] [PubMed] [Google Scholar]
- Machin K. E. Feedback theory and its application to biological systems. Symp Soc Exp Biol. 1964;18:421–445. [PubMed] [Google Scholar]
- Maruyama K., Pringle J. W. The effect of ADP on the ATPase activity of insect actomyosin at low ionic strength. Arch Biochem Biophys. 1967 Apr;120(1):225–227. doi: 10.1016/0003-9861(67)90619-4. [DOI] [PubMed] [Google Scholar]
- PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
- Podolsky R. J., Nolan A. C., Zaveler S. A. Cross-bridge properties derived from muscle isotonic velocity transients. Proc Natl Acad Sci U S A. 1969 Oct;64(2):504–511. doi: 10.1073/pnas.64.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pringle J. W., Tregear R. T. Mechanical properties of insect fibrillar muscle at large amplitudes of oscillation. Proc R Soc Lond B Biol Sci. 1969 Oct 7;174(1034):33–50. doi: 10.1098/rspb.1969.0079. [DOI] [PubMed] [Google Scholar]
- Reedy M. K. Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J Mol Biol. 1968 Jan 28;31(2):155–176. doi: 10.1016/0022-2836(68)90437-3. [DOI] [PubMed] [Google Scholar]
- Rüegg J. C., Schädler M., Steiger G. J., Müller G. Effects of inorganic phosphate on the contractile mechanism. Pflugers Arch. 1971;325(4):359–364. doi: 10.1007/BF00592176. [DOI] [PubMed] [Google Scholar]
- Sacktor B., Hurlbut E. C. Regulation of metabolism in working muscle in vivo. II. Concentrations of adenine nucleotides, arginine phosphate, and inorganic phosphate in insect flight muscle during flight. J Biol Chem. 1966 Feb 10;241(3):632–634. [PubMed] [Google Scholar]
- Schädler M., Steiger G., Rüegg J. C. Tension transients in glycerol-extracted fibres of insect fibrillar muscle (Lethocerus maximus). Experientia. 1969 Sep 15;25(9):942–943. doi: 10.1007/BF01898077. [DOI] [PubMed] [Google Scholar]
- Steiger G. J., Rüegg J. C. Energetics and "efficiency" in the isolated contractile machinery of an insect fibrillar muscle at various frequencies of oscillation. Pflugers Arch. 1969;307(1):1–21. doi: 10.1007/BF00589455. [DOI] [PubMed] [Google Scholar]
- Taylor E. W., Lymn R. W., Moll G. Myosin-product complex and its effect on the steady-state rate of nucleoside triphosphate hydrolysis. Biochemistry. 1970 Jul 21;9(15):2984–2991. doi: 10.1021/bi00817a008. [DOI] [PubMed] [Google Scholar]
- Thorson J., White D. C. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys J. 1969 Mar;9(3):360–390. doi: 10.1016/S0006-3495(69)86392-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White D. C. Rigor contraction and the effect of various phosphate compounds on glycerinated insect flight and vertebrate muscle. J Physiol. 1970 Jul;208(3):583–605. doi: 10.1113/jphysiol.1970.sp009138. [DOI] [PMC free article] [PubMed] [Google Scholar]