Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Oct 1;60(4):406–429. doi: 10.1085/jgp.60.4.406

Some Kinetic and Metabolic Characteristics of Calcium-Induced Potassium Transport in Human Red Cells

Floyd M Kregenow 1, Joseph F Hoffman 1
PMCID: PMC2226081  PMID: 5074809

Abstract

When fresh human erythrocytes or their ghosts are incubated with Ca + IAA (iodoacetic acid) + adenosine, K permeability increases; K permeability also increases when energy-depleted cells or their ghosts are incubated with Ca alone. Na transport decreases or remains unaltered in both situations. The Ca-induced increase in K permeability in the depleted cell system is qualitatively similar to that seen in the fresh cell system and furnishes a means for studying the metabolic dependence of calcium's action. Studies with the depleted system suggest that the normal refractiveness of the cell to calcium is provided by a metabolically dependent substrate. Removal of this substrate allows Ca to enter the cell and exert its effect. By using 47Ca, a maximum value was obtained (3–7 x 10-6 moles/liter of red blood cells) for the quantity of calcium that is taken up by the cell and responsible for the change in K permeability. Measurements of the unidirectional fluxes of K, obtained during the time Ca increases K permeability, appear to satisfy the flux ratio equation for passive diffusion through a membrane.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum R. M., Hoffman J. F. Ca-induced K transport in human red cells: localization of the Ca-sensitive site to the inside of the membrane. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1146–1152. doi: 10.1016/s0006-291x(72)80094-9. [DOI] [PubMed] [Google Scholar]
  2. Ekman A., Manninen V., Salminen S. Ion movements in red cells treated with propranolol. Acta Physiol Scand. 1969 Mar;75(3):333–344. doi: 10.1111/j.1748-1716.1969.tb04386.x. [DOI] [PubMed] [Google Scholar]
  3. GARDOS G. Effect of ethylenediaminetetraacetate on the permeability of human erythrocytes. Acta Physiol Acad Sci Hung. 1958;14(1):1–5. [PubMed] [Google Scholar]
  4. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  5. GARDOS G. The permeability of human erythrocytes to potassium. Acta Physiol Acad Sci Hung. 1956;10(2-4):185–189. [PubMed] [Google Scholar]
  6. GARDOS G. The role of calcium in the potassium permeability of human erythrocytes. Acta Physiol Acad Sci Hung. 1959;15(2):121–125. [PubMed] [Google Scholar]
  7. GRIGARZIK H., PASSOW H. Versuche zum Mechanismus der Bleiwirkung auf die Kaliumpermeabilität roter Blutkörperchen. Pflugers Arch. 1958;267(1):73–92. doi: 10.1007/BF00362247. [DOI] [PubMed] [Google Scholar]
  8. Glynn I. M., Lüthi U. The relation between ouabain-sensitive potassium efflux and the hypothetical dephosphorylation step in the "transport ATPase" system. J Gen Physiol. 1968 May;51(5 Suppl):385S+–385S+. [PubMed] [Google Scholar]
  9. Glynn I. M., Warner A. E. Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug's antiarrhythmic effect. Br J Pharmacol. 1972 Feb;44(2):271–278. doi: 10.1111/j.1476-5381.1972.tb07263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOFFMAN J. F. The active transport of sodium by ghosts of human red blood cells. J Gen Physiol. 1962 May;45:837–859. doi: 10.1085/jgp.45.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henderson P. J., McGivan J. D., Chappell J. B. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem J. 1969 Feb;111(4):521–535. doi: 10.1042/bj1110521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  13. JOYCE C. R., MOORE H., WEATHERALL M. The effects of lead, mercury, and gold on the potassium turnover of rabbit blood cells. Br J Pharmacol Chemother. 1954 Dec;9(4):463–470. doi: 10.1111/j.1476-5381.1954.tb00862.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LEPKE S., PASSOW H. [The effect of alkaline earth metals on cation permeability of fluoride-poisoned erythrocytes]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:473–487. [PubMed] [Google Scholar]
  16. LEPKE S., PASSOW H. [The inhibition of potassium loss of fluoride-poisoned erythrocytes by chelating agents]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:389–396. [PubMed] [Google Scholar]
  17. Manninen V. Movements of sodium and potassium ions and their tracers in propranolol-treated red cells and diaphragm muscle. Acta Physiol Scand Suppl. 1970;355:1–76. [PubMed] [Google Scholar]
  18. Riddick D. H., Kregenow F. M., Orloff J. The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes. J Gen Physiol. 1971 Jun;57(6):752–766. doi: 10.1085/jgp.57.6.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Riordan J. R., Passow H. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts. Biochim Biophys Acta. 1971 Dec 3;249(2):601–605. doi: 10.1016/0005-2736(71)90139-8. [DOI] [PubMed] [Google Scholar]
  20. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tosteson D. C., Cook P., Andreoli T., Tieffenberg M. The effect of valinomycin on potassium and sodium permeability of HK and LK sheep red cells. J Gen Physiol. 1967 Dec;50(11):2513–2525. doi: 10.1085/jgp.50.11.2513. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES