Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Oct 1;60(4):430–453. doi: 10.1085/jgp.60.4.430

Changes in Membrane Properties of Chick Embryonic Hearts during Development

Nick Sperelakis 1, K Shigenobu 1
PMCID: PMC2226086  PMID: 4263008

Abstract

The electrophysiological properties of embryonic chick hearts (ventricles) change during development; the largest changes occur between days 2 and 8. Resting potential (Em) and peak overshoot potential (+E max) increase, respectively, from -35 mv and +11 mv at day 2 to -70 mv and +28 mv at days 12–21. Action potential duration does not change significantly. Maximum rate of rise of the action potential (+V max) increases from about 20 v/sec at days 2–3 to 150 v/sec at days 18–21; + V max of young cells is not greatly increased by applied hyperpolarizing current pulses. In resting Em vs. log [K+]o curves, the slope at high K+ is lower in young hearts (e.g. 30 mv/decade) than the 50–60 mv/decade obtained in old hearts, but the extrapolated [K+]i values (125–140 mM) are almost as high. Input resistance is much higher in young hearts (13 MΩ at day 2 vs. 4.5 MΩ at days 8–21), suggesting that the membrane resistivity (Rm) is higher. The ratio of permeabilities, P Na/P K, is high (about 0.2) in young hearts, due to a low P K, and decreases during ontogeny (to about 0.05). The low K+ conductance (g K) in young hearts accounts for the greater incidence of hyperpolarizing afterpotentials and pacemaker potentials, the lower sensitivity (with respect to loss of excitability) to elevation of [K+]o, and the higher chronaxie. Acetylcholine does not increase g K of young or old ventricular cells. The increase in (Na+, K+)-adenosine triphosphatase (ATPase) activity during development tends to compensate for the increase in g K. +E max and + V max are dependent on [Na+]o in both young and old hearts. However, the Na+ channels in young hearts (2–4 days) are slow, tetrodotoxin (TTX)-insensitive, and activated-inactivated at lower Em. In contrast, the Na+ channels of cells in older hearts (> 8 days) are fast and TTX-sensitive, but they revert back to slow channels when placed in culture.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boethius J., Knutsson E. Resting membrane potential in chick muscle cells during ontogeny. J Exp Zool. 1970 Jul;174(3):281–286. doi: 10.1002/jez.1401740304. [DOI] [PubMed] [Google Scholar]
  2. Boëthius J. Resting membrane potential in neck and leg muscles of young rats. Acta Physiol Scand. 1969 Jan-Feb;75(1):253–254. doi: 10.1111/j.1748-1716.1969.tb04377.x. [DOI] [PubMed] [Google Scholar]
  3. Coraboeuf E., Obrecht-Coutris G., Le Douarin G. Acetylcholine and the embryonic heart. Am J Cardiol. 1970 Mar;25(3):285–291. doi: 10.1016/s0002-9149(70)80005-4. [DOI] [PubMed] [Google Scholar]
  4. DeHaan R. L. The potassium-sensitivity of isolated embryonic heart cells increases with development. Dev Biol. 1970 Oct;23(2):226–240. doi: 10.1016/0012-1606(70)90096-5. [DOI] [PubMed] [Google Scholar]
  5. DeHann R. L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev Biol. 1967 Sep;16(3):216–249. doi: 10.1016/0012-1606(67)90025-5. [DOI] [PubMed] [Google Scholar]
  6. Dominguez G., Fozzard H. A. Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers. Circ Res. 1970 May;26(5):565–574. doi: 10.1161/01.res.26.5.565. [DOI] [PubMed] [Google Scholar]
  7. ENEMAR A., FALCK B. OBSERVATIONS ON THE APPEARANCE OF NOREPINEPHRINE IN THE SYMPATHETIC NERVOUS SYSTEM OF THE CHICK EMBRYO. Dev Biol. 1965 Apr;11:268–283. doi: 10.1016/0012-1606(65)90060-6. [DOI] [PubMed] [Google Scholar]
  8. FINGL E., WOODBURY L. A., HECHT H. H. Effects of innervation and drugs upon direct membrane potentials of embryonic chick myocardium. J Pharmacol Exp Ther. 1952 Jan;104(1):103–114. [PubMed] [Google Scholar]
  9. Garnier D., Rougier O., Gargouïl Y. M., Coraboeuf E. Analyse électrophysiologique du plateau des réponses myocardiques, mise en évidence d'un courant lent entrant en absence d'ions bivalents. Pflugers Arch. 1969;313(4):321–342. doi: 10.1007/BF00593957. [DOI] [PubMed] [Google Scholar]
  10. HARSCH M., GREEN J. W. ELECTROLYTE ANALYSES OF CHICK EMBRYONIC FLUIDS AND HEART TISSUES. J Cell Physiol. 1963 Dec;62:319–326. doi: 10.1002/jcp.1030620312. [DOI] [PubMed] [Google Scholar]
  11. HIBBS R. G. Electron microscopy of developing cardiac muscle in chick embryos. Am J Anat. 1956 Jul;99(1):17–51. doi: 10.1002/aja.1000990103. [DOI] [PubMed] [Google Scholar]
  12. Hermsmeyer K., Sperelakis N. Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba++. Am J Physiol. 1970 Oct;219(4):1108–1114. doi: 10.1152/ajplegacy.1970.219.4.1108. [DOI] [PubMed] [Google Scholar]
  13. KLEIN R. L. Ontogenesis of K and Na fluxes in embryonic chick heart. Am J Physiol. 1960 Oct;199:613–618. doi: 10.1152/ajplegacy.1960.199.4.613. [DOI] [PubMed] [Google Scholar]
  14. KLEIN R. L. THE INDUCTION OF A TRANSFER ADENOSINE TRIPHOSPHATE PHOSPHOHYDROLASE IN EMBRYONIC CHICK HEART. Biochim Biophys Acta. 1963 Jul 9;73:488–498. doi: 10.1016/0006-3002(63)90450-5. [DOI] [PubMed] [Google Scholar]
  15. LEHMKUHL D., SPERELAKIS N. TRANSMEMBRANE POTENTIALS OF TRYPSIN-DISPERSED CHICK HEART CELLS CULTURED IN VITRO. Am J Physiol. 1963 Dec;205:1213–1220. doi: 10.1152/ajplegacy.1963.205.6.1213. [DOI] [PubMed] [Google Scholar]
  16. Pappano A. J. Sodium-dependent depolarization of noninnervated embryonic chick heart by acetylcholine. J Pharmacol Exp Ther. 1972 Feb;180(2):340–350. [PubMed] [Google Scholar]
  17. Pappano A. J., Sperelakis N. Low K+ conductance and low resting potentials of isolated single cultured heart cells. Am J Physiol. 1969 Oct;217(4):1076–1082. doi: 10.1152/ajplegacy.1969.217.4.1076. [DOI] [PubMed] [Google Scholar]
  18. Redfern P., Thesleff S. Action potential generation in denervated rat skeletal muscle. II. The action of tetrodotoxin. Acta Physiol Scand. 1971 May;82(1):70–78. doi: 10.1111/j.1748-1716.1971.tb04943.x. [DOI] [PubMed] [Google Scholar]
  19. Renaud D., Le Douarin G. Mise en évidence, par l'emploi d'inhibiteurs, d'une évolution des perméabilités membranaires cardiaques aux jeunes stades du dévelopment chez l'embryon de poulet. C R Acad Sci Hebd Seances Acad Sci D. 1972 Jan 17;274(3):418–421. [PubMed] [Google Scholar]
  20. Rougier O., Vassort G., Garnier D., Gargouil Y. M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch. 1969;308(2):91–110. doi: 10.1007/BF00587018. [DOI] [PubMed] [Google Scholar]
  21. Shigenobu K., Sperelakis N. Development of sensitivity to tetrodotoxin of chick embryonic hearts with age. J Mol Cell Cardiol. 1971 Dec;3(3):271–286. doi: 10.1016/0022-2828(71)90046-0. [DOI] [PubMed] [Google Scholar]
  22. Shimizu Y., Tasaki K. Electrical excitability of developing cardiac muscle in chick embryos. Tohoku J Exp Med. 1966 Jan 25;88(1):49–56. doi: 10.1620/tjem.88.49. [DOI] [PubMed] [Google Scholar]
  23. Sperelakis N. (Na + , K + )-ATPase activity of embryonic chick heart and skeletal muscles as a function of age. Biochim Biophys Acta. 1972 Apr 14;266(1):230–237. doi: 10.1016/0005-2736(72)90137-x. [DOI] [PubMed] [Google Scholar]
  24. Sperelakis N. Lack of electrical coupling between contiguous myocardial cells in vertebrate hearts. Experientia Suppl. 1969;15:135–165. doi: 10.1007/978-3-0348-6800-6_10. [DOI] [PubMed] [Google Scholar]
  25. Sperelakis N., Lee E. C. Characterization of (Na + ,K + )-ATPase isolated from embryonic chick hearts and cultured chick heart cells. Biochim Biophys Acta. 1971 Jun 1;233(3):562–579. doi: 10.1016/0005-2736(71)90155-6. [DOI] [PubMed] [Google Scholar]
  26. Sperelakis N., Lehmkuhl D. Ba 2+ AND Sr 2+ reversal of the inhibition produced by ouabain and local anesthetics on membrane potentials of cultured heart cells. Exp Cell Res. 1968 Feb;49(2):396–410. doi: 10.1016/0014-4827(68)90189-4. [DOI] [PubMed] [Google Scholar]
  27. Sperelakis N., Lehmkuhl D. Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am J Physiol. 1965 Oct;209(4):693–698. doi: 10.1152/ajplegacy.1965.209.4.693. [DOI] [PubMed] [Google Scholar]
  28. Sperelakis N., Lehmkuhl D. Ionic interconversion of pacemaker and nonpacemaker cultured chick heart cells. J Gen Physiol. 1966 May;49(5):867–895. doi: 10.1085/jgp.49.5.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sperelakis N., Mayer G., Macdonald R. Velocity of propagation in vertebrate cardiac muscles as functions of tonicity and [K+]. Am J Physiol. 1970 Oct;219(4):952–963. doi: 10.1152/ajplegacy.1970.219.4.952. [DOI] [PubMed] [Google Scholar]
  30. Sperelakis N., Schneider M. F., Harris E. J. Decreased K+ conductance produced by Ba++ in frog sartorius fibers. J Gen Physiol. 1967 Jul;50(6):1565–1583. doi: 10.1085/jgp.50.6.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. TRAUTWEIN W. Generation and conduction of impulses in the heart as affected by drugs. Pharmacol Rev. 1963 Jun;15:277–332. [PubMed] [Google Scholar]
  32. Tuganowski W., Cekański A. Electrical activity of a single fibre of the human embryonic heart. Pflugers Arch. 1971;323(1):21–26. doi: 10.1007/BF00586562. [DOI] [PubMed] [Google Scholar]
  33. Vereecke J., Carmeliet E. Sr action potentials in cardiac Purkyne fibres. II. Dependence of the Sr conductance on the external Sr concentration and Sr-Ca antagonism. Pflugers Arch. 1971;322(1):73–82. doi: 10.1007/BF00586666. [DOI] [PubMed] [Google Scholar]
  34. Yeh B. K., Hoffman B. F. The ionic basis of electrical activity in embryonic cardiac muscle. J Gen Physiol. 1968 Oct;52(4):666–681. doi: 10.1085/jgp.52.4.666. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES