Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1972 Nov 1;60(5):499–518. doi: 10.1085/jgp.60.5.499

Active Transport of Chloride by the Giant Neuron of the Aplysia Abdominal Ganglion

J M Russell 1, A M Brown 1
PMCID: PMC2226093  PMID: 4644325

Abstract

Internal chloride activity, ai Cl, and membrane potential, Em, were measured simultaneously in 120 R2 giant neurons of Aplysia californica. ai Cl was 37.0 ± 0.8 mM, Em was -49.3 ± 0.4 mv, and E Cl calculated using the Nernst equation was -56.2 ± 0.5 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated neurons. Cooling to 1°–4°C caused ai Cl to increase at such a rate that 30–80 min after cooling began, E Cl equalled Em. The two then remained equal for as long as 6 hr. Rewarming to 20°C caused ai Cl to decline, and E Cl became more negative than Em once again. Exposure to 100 mM K+-artificial seawater caused a rapid increase of ai Cl. Upon return to control seawater, ai Cl declined despite an unfavorable electrochemical gradient and returned to its control values. Therefore, we conclude that chloride is actively transported out of this neuron. The effects of ouabain and 2,4-dinitrophenol were consistent with a partial inhibitory effect. Chloride permeability calculated from net chloride flux using the constant field equation ranged from 4.0 to 36 x 10-8 cm/sec.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. M., Berman P. R. Mechanism of excitation of Aplysia neurons by carbon dioxide. J Gen Physiol. 1970 Nov;56(5):543–558. doi: 10.1085/jgp.56.5.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown A. M., Sutton R. B., Walker J. L., Jr Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons. J Gen Physiol. 1970 Nov;56(5):559–582. doi: 10.1085/jgp.56.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COOPERSTEIN I. L. The inhibitory effect of strophanthidin on secretion by the isolated gastric mucosa. J Gen Physiol. 1959 Jul 20;42(6):1233–1239. doi: 10.1085/jgp.42.6.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiarandini D. J., Gerschenfeld H. M. Ionic mechanism of cholinergic inhibition in molluscan neurons. Science. 1967 Jun 23;156(3782):1595–1596. doi: 10.1126/science.156.3782.1595. [DOI] [PubMed] [Google Scholar]
  6. Chow S. Y., Kunze D., Brown A. M., Woodbury D. M. Chloride and potassium activities in luminal fluid of turtle thyroid follicles as determined by selective ion-exchanger microelectrodes. Proc Natl Acad Sci U S A. 1970 Oct;67(2):998–1004. doi: 10.1073/pnas.67.2.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coggeshall R. E. A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol. 1967 Nov;30(6):1263–1287. doi: 10.1152/jn.1967.30.6.1263. [DOI] [PubMed] [Google Scholar]
  8. Cornwall M. C., Peterson D. F., Kunze D. L., Walker J. L., Brown A. M. Intracellular potassium and chloride activities measured with liquid ion exchanger microelectrodes. Brain Res. 1970 Oct 28;23(3):433–436. doi: 10.1016/0006-8993(70)90070-3. [DOI] [PubMed] [Google Scholar]
  9. ECCLES J., ECCLES R. M., ITO M. EFFECTS PRODUCED ON INHIBITORY POSTSYNAPTIC POTENTIALS BY THE COUPLED INJECTIONS OF CATIONS AND ANIONS INTO MOTONEURONS. Proc R Soc Lond B Biol Sci. 1964 May 19;160:197–210. doi: 10.1098/rspb.1964.0036. [DOI] [PubMed] [Google Scholar]
  10. Finn A. L., Handler J. S., Orloff J. Active chloride transport in the isolated toad bladder. Am J Physiol. 1967 Jul;213(1):179–184. doi: 10.1152/ajplegacy.1967.213.1.179. [DOI] [PubMed] [Google Scholar]
  11. Gorman A. L., Marmor M. F. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone. J Physiol. 1970 Nov;210(4):897–917. doi: 10.1113/jphysiol.1970.sp009248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagiwara S., Gruener R., Hayashi H., Sakata H., Grinnell A. D. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle. J Gen Physiol. 1968 Nov;52(5):773–792. doi: 10.1085/jgp.52.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hutter O. F., Warner A. E. The pH sensitivity of the chloride conductance of frog skeletal muscle. J Physiol. 1967 Apr;189(3):403–425. doi: 10.1113/jphysiol.1967.sp008176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KERKUT G. A., THOMAS R. C. THE EFFECT OF ANION INJECTION AND CHANGES IN THE EXTERNAL POTASSIUM AND CHLORIDE CONCENTRATION ON THE REVERSAL POTENTIALS OF THE IPSP AND ACETYLCHOLINE. Comp Biochem Physiol. 1964 Feb;11:199–213. doi: 10.1016/0010-406x(64)90163-x. [DOI] [PubMed] [Google Scholar]
  16. KEYNES R. D. CHLORIDE IN THE SQUID GIANT AXON. J Physiol. 1963 Dec;169:690–705. doi: 10.1113/jphysiol.1963.sp007289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kehoe J. S., Ascher P. Re-evaluation of the synaptic activation of an electrogenic sodium pump. Nature. 1970 Feb 28;225(5235):820–823. doi: 10.1038/225820a0. [DOI] [PubMed] [Google Scholar]
  18. Kehoe J. Pharmacological characteristics and ionic bases of a 2 component postsynaptic inhibition. Nature. 1967 Sep 30;215(5109):1503–1505. doi: 10.1038/2151503b0. [DOI] [PubMed] [Google Scholar]
  19. Kitahara S. Active transport of Na+ and C1- by in vitro nonsecreting cat gastric mucosa. Am J Physiol. 1967 Oct;213(4):819–823. doi: 10.1152/ajplegacy.1967.213.4.819. [DOI] [PubMed] [Google Scholar]
  20. Kunze D. L., Brown A. M. Internal potassium and chloride activities and the effects of acetylcholine on identifiable Aplysia neurones. Nat New Biol. 1971 Feb 24;229(8):229–231. doi: 10.1038/newbio229229a0. [DOI] [PubMed] [Google Scholar]
  21. Lux H. D. Ammonium and chloride extrusion: hyperpolarizing synaptic inhibition in spinal motoneurons. Science. 1971 Aug 6;173(3996):555–557. doi: 10.1126/science.173.3996.555. [DOI] [PubMed] [Google Scholar]
  22. MARTIN A. R., PILAR G. DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION. J Physiol. 1963 Sep;168:443–463. doi: 10.1113/jphysiol.1963.sp007202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maren T. H., Broder L. E. The role of carbonic anhydrase in anion secretion into cerebrospinal fluid. J Pharmacol Exp Ther. 1970 Apr;172(2):197–202. [PubMed] [Google Scholar]
  24. Marmor M. F. The effects of temperature and ions on the current-voltage relation and electrical characteristics of a molluscan neurone. J Physiol. 1971 Nov;218(3):573–598. doi: 10.1113/jphysiol.1971.sp009634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moreton R. B. An application of the constant-field theory to the behaviour of giant neurones of the snail, Helix aspersa. J Exp Biol. 1968 Jun;48(3):611–623. doi: 10.1242/jeb.48.3.611. [DOI] [PubMed] [Google Scholar]
  26. Petersen O. H., Poulsen J. H. Inhibition of secretion and secretory potentials in the submandibular gland of the cat by acetazolamide. Experientia. 1966 Dec 15;22(12):821–823. doi: 10.1007/BF01897438. [DOI] [PubMed] [Google Scholar]
  27. Pinsker H., Kandel E. R. Synaptic activation of an electrogenic sodium pump. Science. 1969 Feb 28;163(3870):931–935. doi: 10.1126/science.163.3870.931. [DOI] [PubMed] [Google Scholar]
  28. Russell J. M., Brown A. M. Active transport of potassium and chloride in an identifiable molluscan neuron. Science. 1972 Mar 31;175(4029):1475–1477. doi: 10.1126/science.175.4029.1475. [DOI] [PubMed] [Google Scholar]
  29. Russell J. M., Brown A. M. Active transport of potassium by the giant neuron of the aplysia abdominal ganglion. J Gen Physiol. 1972 Nov;60(5):519–533. doi: 10.1085/jgp.60.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SHANES A. M., BERMAN M. D. Kinetics of ion movement in the squid giant axon. J Gen Physiol. 1955 Nov 20;39(2):279–300. doi: 10.1085/jgp.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Strickholm A., Wallin B. G. Intracellular chloride activity of crayfish giant axons. Nature. 1965 Nov 20;208(5012):790–791. doi: 10.1038/208790a0. [DOI] [PubMed] [Google Scholar]
  32. Strickholm A., Wallin B. G., Shrager P. The pH dependency of relative ion permeabilities in the crayfish giant axon. Biophys J. 1969 Jul;9(7):873–883. doi: 10.1016/S0006-3495(69)86424-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wallin B. G. Intracellular ion concentrations in single crayfish axons. Acta Physiol Scand. 1967 Jul-Aug;70(3):419–430. doi: 10.1111/j.1748-1716.1967.tb03640.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES