Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1973 Oct 1;62(4):489–507. doi: 10.1085/jgp.62.4.489

Measurement of the Permeability of Biological Membranes Application to the glomerular wall

A Verniory 1, R Du Bois 1, P Decoodt 1, J P Gassee 1, P P Lambert 1
PMCID: PMC2226123  PMID: 4755850

Abstract

The transport equation describing the flow of solute across a membrane has been modified on the basis of theoretical studies calculating the drag of a sphere moving in a viscous liquid undergoing Poiseuille flow inside a cylinder. It is shown that different frictional resistance terms should be introduced to calculate the contributions of diffusion and convection. New sieving equations are derived to calculate r and Apx (respectively, the pore radius and the total area of the pores per unit of path length). These equations provide a better agreement than the older formulas between the calculated and the experimental glomerular sieving coefficients for [125I]polyvinylpyrrolidone (PVP) fractions with a mean equivalent radius between 19 and 37 Å. From r and Apx, the mean effective glomerular filtration pressure has been calculated, applying Poiseuille's law. A value of 15.4 mm Hg has been derived from the mean sieving curve obtained from 23 experiments performed on normal anesthetized dogs.

Full Text

The Full Text of this article is available as a PDF (825.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arturson G., Groth T., Grotte G. Human glomerular membrane porosity and filtration pressure: dextran clearance data analysed by theoretical models. Clin Sci. 1971 Feb;40(2):137–158. doi: 10.1042/cs0400137. [DOI] [PubMed] [Google Scholar]
  2. Bresler E. H., Wendt R. P. Diffusion and convective flow across membranes: irreversible the thermodynamic approach. Science. 1969 Feb 28;163(3870):944–945. doi: 10.1126/science.163.3870.944. [DOI] [PubMed] [Google Scholar]
  3. KEDEM O., KATCHALSKY A. A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol. 1961 Sep;45:143–179. doi: 10.1085/jgp.45.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
  5. LAMBERT P. P., GREGOIRE F., MALMENDIER C. La perméabilité glomérulaire aux substances protidiques. Rev Fr Etud Clin Biol. 1957 Jan;2(1):15–21. [PubMed] [Google Scholar]
  6. Lambert P. P., Verniory A., Gassee J. P., Ficheroulle P. Sieving equations and effective glomerular filtration pressure. Kidney Int. 1972 Sep;2(3):131–146. doi: 10.1038/ki.1972.83. [DOI] [PubMed] [Google Scholar]
  7. PAPPENHEIMER J. R. Uber die Permeabililität der Glomerulummembranen in der Niere. Klin Wochenschr. 1955 Apr 15;33(15-16):362–365. doi: 10.1007/BF01467967. [DOI] [PubMed] [Google Scholar]
  8. SCHOLTAN W. Beziehung zwischen der Grösse von Polyvinylpyrrolidon-Molekülen und ihrer Permeabilität durch die Glomerulummembranen der Niere. Z Gesamte Exp Med. 1959;130(6):556–576. [PubMed] [Google Scholar]
  9. Venkatachalam M. A., Karnovsky M. J., Fahimi H. D., Cotran R. S. An ultrastructural study of glomerular permeability using catalase and peroxidase as tracer proteins. J Exp Med. 1970 Dec 1;132(6):1153–1167. doi: 10.1084/jem.132.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES