Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1973 Oct 1;62(4):448–472. doi: 10.1085/jgp.62.4.448

Functional Organization of the Cardiac Ganglion of the Lobster, Homarus americanus

Earl Mayeri 1
PMCID: PMC2226124  PMID: 19873680

Abstract

External recording and stimulation, techniques were used to determine which neurons and interactions are essential for production of the periodic burst discharge in the lobster cardiac ganglion. Burst activity can be modulated by brief single shocks applied to the four small cells, but not by similar stimulation of the five large cells, suggesting that normally one or more small cells primarily determine burst rate and duration. Repetitive electrical stimulation of large cells initiates spike activity in small cells, probably via excitatory synaptic and/or electrotonic connections which may normally act to prolong bursts and decrease burst rate. Transection of the ganglion can result in burst activity in small cells in the partial or complete absence of large cell spike activity, but large cells isolated from small cell excitatory synaptic input by transection or by application of dinitrophenol do not burst. Generally, transections which decrease excitatory feedback to small cells are accompanied by an increase in burst rate, but mean spike frequency over an entire burst cycle stabilizes at the original level within 10–30 min for various groups of cells whose spike-initiating sites are still intact. These and previous results suggest that the system is two layered: one or more small cells generate the burst pattern and impose it on the large cells which are the system's motorneurons.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alving B. O. Spontaneous activity in isolated somata of Aplysia pacemaker naurons. J Gen Physiol. 1968 Jan;51(1):29–45. doi: 10.1085/jgp.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M., Cooke I. M. Neural activation of the heart of the lobster Homarus americanus. J Exp Biol. 1971 Oct;55(2):449–468. doi: 10.1242/jeb.55.2.449. [DOI] [PubMed] [Google Scholar]
  3. BULLOCK T. H., TERZUOLO C. A. Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J Physiol. 1957 Oct 30;138(3):341–364. doi: 10.1113/jphysiol.1957.sp005855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Connor J. A. Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. J Exp Biol. 1969 Apr;50(2):275–295. doi: 10.1242/jeb.50.2.275. [DOI] [PubMed] [Google Scholar]
  5. Cooke I. M. The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. Am Zool. 1966 May;6(2):107–121. doi: 10.1093/icb/6.2.107. [DOI] [PubMed] [Google Scholar]
  6. Evoy W. H., Cohen M. J. Central and peripheral control of arthropod movements. Adv Comp Physiol Biochem. 1971;4:225–266. doi: 10.1016/b978-0-12-011504-4.50010-3. [DOI] [PubMed] [Google Scholar]
  7. HAGIWARA S., BULLOCK T. H. Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J Cell Physiol. 1957 Aug;50(1):25–47. doi: 10.1002/jcp.1030500103. [DOI] [PubMed] [Google Scholar]
  8. HAGIWARA S. Nervous activities of the heart in Crustacea. Ergeb Biol. 1961;24:287–311. doi: 10.1007/978-3-642-94805-3_8. [DOI] [PubMed] [Google Scholar]
  9. HAGIWARA S., WATANABE A., SAITO N. Potential changes in syncytial neurons of lobster cardiac ganglion. J Neurophysiol. 1959 Sep;22:554–572. doi: 10.1152/jn.1959.22.5.554. [DOI] [PubMed] [Google Scholar]
  10. Hartline D. K., Cooke I. M. Postsynaptic membrane response predicted from presynaptic input pattern in lobster cardiac ganglion. Science. 1969 May 30;164(3883):1080–1082. doi: 10.1126/science.164.3883.1080. [DOI] [PubMed] [Google Scholar]
  11. Hartline D. K. Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobster Homarus americanus. J Exp Biol. 1967 Oct;47(2):327–340. doi: 10.1242/jeb.47.2.327. [DOI] [PubMed] [Google Scholar]
  12. Livengood D. R., Kusano K. Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. J Neurophysiol. 1972 Mar;35(2):170–186. doi: 10.1152/jn.1972.35.2.170. [DOI] [PubMed] [Google Scholar]
  13. Mayeri E. A Relaxation Oscillator Description of the Burst-Generating Mechanism in the Cardiac Ganglion of the Lobster, Homarus americanus. J Gen Physiol. 1973 Oct 1;62(4):473–488. doi: 10.1085/jgp.62.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maynard D. M. Integration in crustacean ganglia. Symp Soc Exp Biol. 1966;20:111–149. [PubMed] [Google Scholar]
  15. Nakajima S., Takahashi K. Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. J Physiol. 1966 Nov;187(1):105–127. doi: 10.1113/jphysiol.1966.sp008078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rao K. P., Babu K. S., Ishiko N., Bullock T. H. Effectiveness of temporal pattern in the input to a ganglion: inhibition in the cardiac ganglion of spiny lobsters. J Neurobiol. 1969;1(2):233–245. doi: 10.1002/neu.480010210. [DOI] [PubMed] [Google Scholar]
  18. Sokolove P. G., Cooke I. M. Inhibition of impulse activity in a sensory neuron by an electrogenic pump. J Gen Physiol. 1971 Feb;57(2):125–163. doi: 10.1085/jgp.57.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. TAUC L. Site of origin and propagation in spike in the giant neuron of Aplysia. J Gen Physiol. 1962 Jul;45:1077–1097. doi: 10.1085/jgp.45.6.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tazaki K. Small synaptic potentials in burst activity of large neurons in the lobster cardiac ganglion. Jpn J Physiol. 1971 Dec;21(6):645–658. doi: 10.2170/jjphysiol.21.645. [DOI] [PubMed] [Google Scholar]
  21. Tazaki K. The effects of tetrodotoxin on the slow potential and spikes in the cardiac ganglion of a crab, Eriocheir japonicus. Jpn J Physiol. 1971 Oct;21(5):529–536. doi: 10.2170/jjphysiol.21.529. [DOI] [PubMed] [Google Scholar]
  22. WATANABE A., BULLOCK T. H. Modulation of activity of one neuron by subthreshold slow potentials in another in lobster cardiac ganglion. J Gen Physiol. 1960 Jul;43:1031–1045. doi: 10.1085/jgp.43.6.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WATANABE A. The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn J Physiol. 1958 Dec 20;8(4):305–318. doi: 10.2170/jjphysiol.8.305. [DOI] [PubMed] [Google Scholar]
  24. Watanabe A., Obara S., Akiyama T. Pacemaker potentials for the periodic burst discharge in the heart ganglion of a stomatopod, Squilla oratoria. J Gen Physiol. 1967 Mar;50(4):839–862. doi: 10.1085/jgp.50.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilson D. M. Central nervous mechanisms for the generation of rhythmic behaviour in arthropods. Symp Soc Exp Biol. 1966;20:199–228. [PubMed] [Google Scholar]
  26. Wilson D. M. Inherent asymmetry and reflex modulation of the locust flight motor pattern. J Exp Biol. 1968 Jun;48(3):631–641. doi: 10.1242/jeb.48.3.631. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES