Abstract
The permeability of human red cell membrane to 90 different molecules has been measured. These solutes cover a wide spectrum of nonelectrolytes with varying chemical structure, chain length, lipid solubility, chemical reactive group, ability to form hydrogen bonds, and other properties. In general, the present study suggests that the permeability of red cell membrane to a large solute is determined by lipid solubility, its molecular size, and its hydrogen-bonding ability. The permeability coefficient increases with increasing lipid solubility and decreasing ability to form hydrogen bonds, whereas it decreases with increasing molecular size. In the case of small solutes, the predominant diffusion factor is steric hindrance augmented by lipid solubility. It is also found that replacement of a hydroxyl group by a carbonyl group or an ether linkage tends to increase permeability. On the other hand, replacement of a hydroxyl group by an amide group tends to decrease the permeability coefficient.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Diamond J. M., Wright E. M. Molecular forces governing non-electrolyte permeation through cell membranes. Proc R Soc Lond B Biol Sci. 1969 Mar 18;171(1028):273–316. doi: 10.1098/rspb.1969.0022. [DOI] [PubMed] [Google Scholar]
- Gary-Bobo C. M., DiPolo R., Solomon A. K. Role of hydrogen-bonding in nonelectrolyte diffusion through dense artificial membranes. J Gen Physiol. 1969 Sep;54(3):369–382. doi: 10.1085/jgp.54.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter F. R., George J., Ospina B. Possible carriers in erythrocytes. J Cell Physiol. 1965 Jun;65(3):299–311. doi: 10.1002/jcp.1030650303. [DOI] [PubMed] [Google Scholar]
- Lieb W. R., Stein W. D. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes. Nature. 1969 Oct 18;224(5216):240–243. doi: 10.1038/224240a0. [DOI] [PubMed] [Google Scholar]
- Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
- Owen J. D., Solomon A. K. Control of nonelectrolyte permeability in red cells. Biochim Biophys Acta. 1972 Dec 1;290(1):414–418. doi: 10.1016/0005-2736(72)90087-9. [DOI] [PubMed] [Google Scholar]
- Sha'afi R. I., Gary-Bobo C. M., Solomon A. K. Permeability of red cell membranes to small hydrophilic and lipophilic solutes. J Gen Physiol. 1971 Sep;58(3):238–258. doi: 10.1085/jgp.58.3.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sha'afi R. I., Gary-Bobo C. M. Water and nonelectrolytes permeability in mammalian red cell membranes. Prog Biophys Mol Biol. 1973;26:103–146. doi: 10.1016/0079-6107(73)90018-7. [DOI] [PubMed] [Google Scholar]
- Sha'afi R. I., Rich G. T., Sidel V. W., Bossert W., Solomon A. K. The effect of the unstirred layer on human red cell water permeability. J Gen Physiol. 1967 May;50(5):1377–1399. doi: 10.1085/jgp.50.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright E. M., Diamond J. M. Patterns of non-electrolyte permeability. Proc R Soc Lond B Biol Sci. 1969 Mar 18;171(1028):227–271. doi: 10.1098/rspb.1969.0021. [DOI] [PubMed] [Google Scholar]