Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 Jul 1;64(1):49–69. doi: 10.1085/jgp.64.1.49

Light-Induced Changes in Photoreceptor Membrane Resistance and Potential in Gecko Retinas

II. Preparations with Active Lateral Interactions

L H Pinto 1, W L Pak 1
PMCID: PMC2226147  PMID: 4837686

Abstract

The time-course of light-induced changes in membrane voltage and resistance were measured in single photoreceptors in eyecup preparations of Gekko gekko. A small circular stimulus directed toward the impaled receptor produced membrane hyperpolarization. Application of a steady annular light to the receptor periphery resulted in diminution of the receptor's response to the stimulus. The effects of illumination of the surrounding receptors were isolated by directing a small, steady desensitizing light to the impaled receptor and then applying a peripheral stimulus. Brief stimuli produced a transient decrease in resistance with rapid onset and offset, a time-course similar to that of the response diminution. For some cells a depolarization that coincided with the resistance decrease was seen. During illumination with prolonged stimuli the resistance decrease was followed by a slow increase. After offset resistance rose transiently above the original value and then returned slowly to its original value. The slow resistance changes were not accompanied by changes in membrane voltage. The response diminution, resistance decrease, and depolarization were not observed in retinas treated with aspartate or hypoxia. It is therefore concluded that these effects are mediated by horizontal cells. The diminution is achieved by shunting the receptor potential and may play a role in field adaptation.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cervetto L., MacNichol E. F., Jr Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science. 1972 Nov 17;178(4062):767–768. doi: 10.1126/science.178.4062.767. [DOI] [PubMed] [Google Scholar]
  3. Dowling J. E., Ripps H. Adaptation in skate photoreceptors. J Gen Physiol. 1972 Dec;60(6):698–719. doi: 10.1085/jgp.60.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dowling J. E. The site of visual adaptation. Science. 1967 Jan 20;155(3760):273–279. doi: 10.1126/science.155.3760.273. [DOI] [PubMed] [Google Scholar]
  5. Dunn R. F. The dimensions of rod outer segments related to light absorption in the gecko retina. Vision Res. 1969 May;9(5):603–609. doi: 10.1016/0042-6989(69)90022-4. [DOI] [PubMed] [Google Scholar]
  6. Easter S. S., Jr Adaptation in the goldfish retina. J Physiol. 1968 Mar;195(2):273–281. doi: 10.1113/jphysiol.1968.sp008458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enroth-Cugell C., Pinto L. H. Properties of the surround response mechanism of cat retinal ganglion cells and centre-surround interaction. J Physiol. 1972 Jan;220(2):403–439. doi: 10.1113/jphysiol.1972.sp009714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Enroth-Cugell C., Shapley R. M. Adaptation and dynamics of cat retinal ganglion cells. J Physiol. 1973 Sep;233(2):271–309. doi: 10.1113/jphysiol.1973.sp010308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ernst W., Kemp C. M. The effects of rhodopsin decomposition on P3 responses of isolated rat retinae. Vision Res. 1972 Dec;12(12):1937–1946. doi: 10.1016/0042-6989(72)90050-8. [DOI] [PubMed] [Google Scholar]
  10. Falk G., Fatt P. An analysis of light-induced admittance changes in rod outer segments. J Physiol. 1973 Feb;229(1):185–220. doi: 10.1113/jphysiol.1973.sp010134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grabowski S. R., Pinto L. H., Pak W. L. Adaptation in retinal rods of axolotl: intracellular recordings. Science. 1972 Jun 16;176(4040):1240–1243. doi: 10.1126/science.176.4040.1240. [DOI] [PubMed] [Google Scholar]
  12. Hood D. C., Mansfield A. F. The isolated receptor potential of the frog isolated retina: action spectra before and after extensive bleaching. Vision Res. 1972 Dec;12(12):2109–2119. doi: 10.1016/0042-6989(72)90060-0. [DOI] [PubMed] [Google Scholar]
  13. KUFFLER S. W. Neurons in the retina; organization, inhibition and excitation problems. Cold Spring Harb Symp Quant Biol. 1952;17:281–292. doi: 10.1101/sqb.1952.017.01.026. [DOI] [PubMed] [Google Scholar]
  14. O'Bryan P. M. Properties of the depolarizing synaptic potential evoked by peripheral illumination in cones of the turtle retina. J Physiol. 1973 Nov;235(1):207–223. doi: 10.1113/jphysiol.1973.sp010385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RUSHTON W. A. THE SENSITIVITY OF RODS UNDER ILLUMINATION. J Physiol. 1965 May;178:141–160. doi: 10.1113/jphysiol.1965.sp007620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weinstein G. W., Hobson R. R., Dowling J. E. Light and dark adaptation in the isolated rat retina. Nature. 1967 Jul 8;215(5097):134–138. doi: 10.1038/215134a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES