Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 Jul 1;64(1):26–48. doi: 10.1085/jgp.64.1.26

Light-Induced Changes in Photoreceptor Membrane Resistance and Potential in Gecko Retinas

I. Preparations Treated to Reduce Lateral Interactions

L H Pinto 1, W L Pak 1
PMCID: PMC2226150  PMID: 4837685

Abstract

The time-course of the light-induced changes in membrane voltage and resistance were measured for single photoreceptors in the retina of Gekko gekko. In the surgically isolated retina, small stimuli directed toward the impaled receptor produced a membrane hyperpolarization the time-course of which was identical to that of the increase in membrane resistance. In the eyecup preparation nearly identical time-courses were evoked only after perfusion of the vitreous surface with solution having high (Mg++). Disparate time-courses were obtained in (a) the isolated retina when large or displaced stimuli were used, and (b) the eyecup preparation when it was treated normally (see Pinto and Pak. 1974. J. Gen. Physiol. 64:49) and when it was exposed to aspartate ions or hypoxia. These results are consistent with the hypothesis that the receptor potential (elicited in the impaled receptor as a result of quanta only it captures) is generated by a single ionic process that decreases membrane conductance. These measurements provide a means to distinguish the receptor potential from interactions. From direct measurements of membrane time constant and total resistance in darkness, total membrane capacitance was calculated. The mean capacitance was 7.1 x 10-5 µF. This high value is consistent with anatomical observations of membrane infoldings at the base of gecko photoreceptors.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bortoff A. Localization of slow potential responses in the Necturus retina. Vision Res. 1964 Dec;4(11):627–635. doi: 10.1016/0042-6989(64)90048-3. [DOI] [PubMed] [Google Scholar]
  3. Brown J. E., Pinto L. H. Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J Physiol. 1974 Feb;236(3):575–591. doi: 10.1113/jphysiol.1974.sp010453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRESCITELLI F. THE PHOTOSENSITIVE RETINAL PIGMENT SYSTEM OF GEKKO GEKKO. J Gen Physiol. 1963 Sep;47:33–52. doi: 10.1085/jgp.47.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cervetto L. Influence of sodium, potassium and chloride ions on the intracellular responses of turtle photoreceptors. Nature. 1973 Feb 9;241(5389):401–403. doi: 10.1038/241401a0. [DOI] [PubMed] [Google Scholar]
  6. Cervetto L., MacNichol E. F., Jr Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science. 1972 Nov 17;178(4062):767–768. doi: 10.1126/science.178.4062.767. [DOI] [PubMed] [Google Scholar]
  7. Crescitelli F. The spectral sensitivity of the gecko eye in relation to the state of adaptation. Vision Res. 1966 Apr;6(3):129–142. doi: 10.1016/0042-6989(66)90035-6. [DOI] [PubMed] [Google Scholar]
  8. Dowling J. E., Ripps H. Effect of magnesium on horizontal cell activity in the skate retina. Nature. 1973 Mar 9;242(5393):101–103. doi: 10.1038/242101a0. [DOI] [PubMed] [Google Scholar]
  9. Dunn R. F. Studies on the retina of the gecko Coleonyx variegatus. I. The visual cell classification. J Ultrastruct Res. 1966 Dec;16(5):651–671. doi: 10.1016/s0022-5320(66)80012-6. [DOI] [PubMed] [Google Scholar]
  10. Dunn R. F. The dimensions of rod outer segments related to light absorption in the gecko retina. Vision Res. 1969 May;9(5):603–609. doi: 10.1016/0042-6989(69)90022-4. [DOI] [PubMed] [Google Scholar]
  11. Falk G., Fatt P. An analysis of light-induced admittance changes in rod outer segments. J Physiol. 1973 Feb;229(1):185–220. doi: 10.1113/jphysiol.1973.sp010134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagins W. A., Penn R. D., Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970 May;10(5):380–412. doi: 10.1016/S0006-3495(70)86308-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagins W. A. The visual process: Excitatory mechanisms in the primary receptor cells. Annu Rev Biophys Bioeng. 1972;1:131–158. doi: 10.1146/annurev.bb.01.060172.001023. [DOI] [PubMed] [Google Scholar]
  14. Hubbard J. I., Loyning Y. The effects of hypoxia on neuromuscular transmission in a mammalian preparation. J Physiol. 1966 Jul;185(1):205–223. doi: 10.1113/jphysiol.1966.sp007982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Korenbrot J. I., Cone R. A. Dark ionic flux and the effects of light in isolated rod outer segments. J Gen Physiol. 1972 Jul;60(1):20–45. doi: 10.1085/jgp.60.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murakami M., Pak W. L. Intracellularly recorded early receptor potential of the vertebrate photoreceptors. Vision Res. 1970 Oct;10(10):965–975. doi: 10.1016/0042-6989(70)90074-x. [DOI] [PubMed] [Google Scholar]
  17. Pedler C., Tilly R. The nature of the Gecko visual cell. A light and electron microscopic study. Vision Res. 1964 Nov;4(10):499–510. doi: 10.1016/0042-6989(64)90056-2. [DOI] [PubMed] [Google Scholar]
  18. Penn R. D., Hagins W. A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969 Jul 12;223(5202):201–204. doi: 10.1038/223201a0. [DOI] [PubMed] [Google Scholar]
  19. Sillman A. J., Ito H., Tomita T. Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 1969 Dec;9(12):1435–1442. doi: 10.1016/0042-6989(69)90059-5. [DOI] [PubMed] [Google Scholar]
  20. Sillman A. J., Ito H., Tomita T. Studies on the mass receptor potential of the isolated frog retina. II. On the basis of the ionic mechanism. Vision Res. 1969 Dec;9(12):1443–1451. doi: 10.1016/0042-6989(69)90060-1. [DOI] [PubMed] [Google Scholar]
  21. Smith T. G., Wuerker R. B., Frank K. Membrane impedance changes during synaptic transmission in cat spinal motoneurons. J Neurophysiol. 1967 Sep;30(5):1072–1096. doi: 10.1152/jn.1967.30.5.1072. [DOI] [PubMed] [Google Scholar]
  22. Tomita T. Electrical activity of vertebrate photoreceptors. Q Rev Biophys. 1970 May;3(2):179–222. doi: 10.1017/s0033583500004571. [DOI] [PubMed] [Google Scholar]
  23. Toyoda J., Nosaki H., Tomita T. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 1969 Apr;9(4):453–463. doi: 10.1016/0042-6989(69)90134-5. [DOI] [PubMed] [Google Scholar]
  24. Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]
  25. Winkler B. S. The electroretinogram of the isolated rat retina. Vision Res. 1972 Jun;12(6):1183–1198. doi: 10.1016/0042-6989(72)90106-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES