Abstract
The apparent affinities of various amino acids for the neutral amino acid transport system in rabbit ileum were determined by measuring the inhibition of L-methionine-14C influx across the brush border membrane. The apparent affinity was very low for compounds lacking an α-amino group, compounds with the α-hydrogen substituted by a methyl group, D-compounds, compounds with tertiary branching in the side chain, compounds with either a positive or negative charge in the side chain, and in most cases, compounds with a hydrophilic moiety in the side chain. High apparent affinities were exhibited by compounds with unbranched carbon or carbon-sulfur side chains. Branched compounds such as valine and leucine exhibited affinities which correlate with binding of only the linear portion of the side chain. The calculated change in free energy of binding is 370 cal/mol/CH2 group which suggests the binding region for the side chain is partially hydrophobic. The affinities of families of analogues, derivatives of cysteine, methionine, serine, alanine, valine, and phenylalanine, correlate with their calculated octanol/water partition coefficients and are also correlated with apparent structural and electronic differences between families. The data permit a preliminary description of the functional geometry of the neutral amino acid transport site. The site contains a region for binding the α-amino group, α-carboxyl group, and side chain. The regions about the α-amino group and α-hydrogen are quite sterically limited. The side chain binding region is hydrophobic in nature and appears to be shallow, binding only the linear portion of branched or ring compounds.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON B. M., REYNOLDS M. L., ANDERSON C. D. HYDROPHOBIC INTERACTIONS OF INHIBITORS WITH YEAST ALCOHOL DEHYDROGENASE. Biochim Biophys Acta. 1965 Apr 26;99:46–55. doi: 10.1016/s0926-6593(65)80006-6. [DOI] [PubMed] [Google Scholar]
- Christensen H. N. On the meaning of effects of substrate structure on biological transport. J Bioenerg. 1973 Jan;4(1):31–61. doi: 10.1007/BF01516050. [DOI] [PubMed] [Google Scholar]
- Christensen H. N., Thomas E. L., Handlogten M. E. Features of amino acid structure enhancing or obstructing cosubstrate reactivity of Na+ in transport. Biochim Biophys Acta. 1969 Oct 14;193(1):228–230. doi: 10.1016/0005-2736(69)90079-0. [DOI] [PubMed] [Google Scholar]
- Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels V. G., Dawson A. G., Newey H., Smyth D. H. Effect of carbon chain length and amino group position on neutral amino acid transport systems in rat small intestine. Biochim Biophys Acta. 1969 Apr;173(3):575–577. doi: 10.1016/0005-2736(69)90025-x. [DOI] [PubMed] [Google Scholar]
- Dietschy J. M., Sallee V. L., Wilson F. A. Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology. 1971 Dec;61(6):932–934. [PubMed] [Google Scholar]
- Frizzell R. A., Schultz S. G. Effects of monovalent cations on the sodium-alanine interaction in rabbit ileum. Implication of anionic groups in sodium binding. J Gen Physiol. 1970 Oct;56(4):462–490. doi: 10.1085/jgp.56.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajjar J. J., Curran P. F. Characteristics of the amino acid transport system in the mucosal border of rabbit ileum. J Gen Physiol. 1970 Dec;56(6):673–691. doi: 10.1085/jgp.56.6.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansch C., Coats E. Alpha-chymotrypsin: a case study of substituent constants and regression analysis in enzymic structure--activity relationships. J Pharm Sci. 1970 Jun;59(6):731–743. doi: 10.1002/jps.2600590602. [DOI] [PubMed] [Google Scholar]
- Herzberg G. R., Sheerin H., Lerner J. Cationic amino acid transport in chicken small intestine. Comp Biochem Physiol A Comp Physiol. 1971 Sep 1;40(1):229–247. doi: 10.1016/0300-9629(71)90163-0. [DOI] [PubMed] [Google Scholar]
- Inui Y., Christensen H. N. Discrimination of single transport systems. The Na plus-sensitive transport of neutral amino acids in the Ehrlich cell. J Gen Physiol. 1966 Sep;50(1):203–224. doi: 10.1085/jgp.50.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACQUEZ J. A. Carrier-amino acid stoichiometry in amino acid transport in Ehrlich ascites cells. Biochim Biophys Acta. 1963 Apr;71:15–33. doi: 10.1016/0006-3002(63)90981-8. [DOI] [PubMed] [Google Scholar]
- LIN E. C., HAGIHIRA H., WILSON T. H. Specificity of the transport system for neutral amino acids in the hamster intestine. Am J Physiol. 1962 May;202:919–925. doi: 10.1152/ajplegacy.1962.202.5.919. [DOI] [PubMed] [Google Scholar]
- Lanman R. C., Burton J. A., Schanker L. S. Diffusion coefficients of some 14 C-labeled saccharides of biological interest. Life Sci II. 1971 Jul 22;10(14):803–811. doi: 10.1016/0024-3205(71)90004-x. [DOI] [PubMed] [Google Scholar]
- Lerner J., Miller D. S. Specificity limits of L-leucine transport in chicken small intestine. Experientia. 1972 Nov 15;28(11):1312–1313. doi: 10.1007/BF01965315. [DOI] [PubMed] [Google Scholar]
- Lombardi F. J., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. J Biol Chem. 1972 Dec 25;247(24):7844–7857. [PubMed] [Google Scholar]
- Lombardini J. B., Coulter A. W., Talalay P. Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase reaction. Deductions concerning the conformation of methionine. Mol Pharmacol. 1970 Sep;6(5):481–499. [PubMed] [Google Scholar]
- MATTHEWS D. M., LASTER L. KINETICS OF INTESTINAL ACTIVE TRANSPORT OF FIVE NEUTRAL AMINO ACIDS. Am J Physiol. 1965 Apr;208:593–600. doi: 10.1152/ajplegacy.1965.208.4.593. [DOI] [PubMed] [Google Scholar]
- Marshall T. H., Akgün A. The specificity of porcine elastase and -chymotrypsin. Effect of fatty acid chain length in a homologous series of nitrophenyl esters. J Biol Chem. 1971 Oct 10;246(19):6019–6023. [PubMed] [Google Scholar]
- Meister A. The specificity of glutamine synthetase and its relationship to substrate conformation at the active site. Adv Enzymol Relat Areas Mol Biol. 1968;31:183–218. doi: 10.1002/9780470122761.ch5. [DOI] [PubMed] [Google Scholar]
- OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
- PAINE C. M., HEINZ E. The structural specificity of the glycine transport system of Ehrlich carcinoma cells. J Biol Chem. 1960 Apr;235:1080–1085. [PubMed] [Google Scholar]
- Peterson S. C., Goldner A. M., Curran P. F. Glycine transport in rabbit ileum. Am J Physiol. 1970 Oct;219(4):1027–1032. doi: 10.1152/ajplegacy.1970.219.4.1027. [DOI] [PubMed] [Google Scholar]
- READ C. P., ROTHMAN H., SIMMONS J. E., Jr STUDIES ON MEMBRANE TRANSPORT, WITH SPECIAL REFERENCE TO PARASITE-HOST INTEGRATION. Ann N Y Acad Sci. 1963 Dec 30;113:154–205. doi: 10.1111/j.1749-6632.1963.tb40664.x. [DOI] [PubMed] [Google Scholar]
- Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol. 1971 Jun;57(6):639–663. doi: 10.1085/jgp.57.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHRIER E. E., SCHERAGA H. A. The effect of aqueous alcohol solutions on the thermal transition of ribonuclease. Biochim Biophys Acta. 1962 Oct 22;64:406–408. doi: 10.1016/0006-3002(62)90752-7. [DOI] [PubMed] [Google Scholar]
- SCHWIMMER S., RYAN C. A., WONG F. F. SPECIFICITY OF L-CYSTEINE SULFOXIDE LYASE AND PARTIALLY COMPETITIVE INHIBITION BY S-ALKYL-L-CYSTEINES. J Biol Chem. 1964 Mar;239:777–782. [PubMed] [Google Scholar]
- SPENCER R. P., WEINSTEIN J., SUSSMAN A., BOW T. M., MARKULIS M. A. Effect of structural analogues on intestinal accumulation of glycine. Am J Physiol. 1962 Oct;203:634–636. doi: 10.1152/ajplegacy.1962.203.4.634. [DOI] [PubMed] [Google Scholar]
- Sallee V. L., Wilson F. A., Dietschy J. M. Determination of unidirectional uptake rates for lipids across the intestinal brush border. J Lipid Res. 1972 Mar;13(2):184–192. [PubMed] [Google Scholar]
- Santi D. V., Danenberg P. V. Phenylalanyl transfer ribonucleic acid synthetase from Escherichia coli. Analysis of the phenylalanine binding site. Biochemistry. 1971 Dec 7;10(25):4813–4820. doi: 10.1021/bi00801a032. [DOI] [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F., Chez R. A., Fuisz R. E. Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol. 1967 May;50(5):1241–1260. doi: 10.1085/jgp.50.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Markscheid-Kaspi L. Competitive interactions between L-alanine and L-phenylalanine in rabbit ileum. Biochim Biophys Acta. 1971 Sep 14;241(3):857–860. doi: 10.1016/0005-2736(71)90013-7. [DOI] [PubMed] [Google Scholar]
- Schultz S. G., Yu-Tu L., Strecker C. K. Influx of neutral amino acids across the brush border of rabbit ileum. Stereospecificity and the roles of the -amino and -carboxylate groups. Biochim Biophys Acta. 1972 Nov 2;288(2):367–379. doi: 10.1016/0005-2736(72)90258-1. [DOI] [PubMed] [Google Scholar]
- Thomas E. L., Christensen H. N. Nature of the cosubstrate action of Na+ and neutral amino acids in a transport system. J Biol Chem. 1971 Mar 25;246(6):1682–1688. [PubMed] [Google Scholar]
- Winne D. Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim Biophys Acta. 1973 Feb 27;298(1):27–31. doi: 10.1016/0005-2736(73)90005-9. [DOI] [PubMed] [Google Scholar]