Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 Oct 1;64(4):413–430. doi: 10.1085/jgp.64.4.413

Potassium Flux and Leaf Movement in Samanea saman

I. Rhythmic Movement

R L Satter 1, G T Geballe 1, P B Applewhite 1, A W Galston 1
PMCID: PMC2226155  PMID: 4424264

Abstract

Samanea leaflets usually open in white light and fold together when darkened, but also open and dose with a circadian rhythm during prolonged darkness. Leaflet movement results from differential changes in the turgor and shape of motor cells on opposite sides of the pulvinus; extensor cells expand during opening and shrink during closure, while flexor cells shrink during opening and expand during closure but change shape more than size. Potassium in both open and closed pulvini is about 0.4 N. Flame photometric and electron microprobe analyses reveal that rhythmic and light-regulated postassium flux is the basis for pulvinar turgor movements. Rhythmic potassium flux during darkness in motor cells in the extensor region involves alternating predominance of inwardly directed ion pumps and leakage outward through diffusion channels, each lasting ca 12 h. White light affects the system by activating outwardly directed K+ pumps in motor cells in the flexor region.

Full Text

The Full Text of this article is available as a PDF (892.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Mechanism of the Seismonastic Reaction in Mimosa pudica. Plant Physiol. 1969 Aug;44(8):1101–1107. doi: 10.1104/pp.44.8.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Applewhite P. B., Satter R. L., Galston A. W. Protein synthesis during endogenous rhythmic leaflet movement in Albizzia. J Gen Physiol. 1973 Dec;62(6):707–713. doi: 10.1085/jgp.62.6.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bünning E., Moser I. Influence of valinomycin on circadian leaf movements of Phaseolus. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2732–2733. doi: 10.1073/pnas.69.9.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Engelmann W. Lithium slows down the Kalanchoe clock. Z Naturforsch B. 1972 Apr;27(4):477–477. doi: 10.1515/znb-1972-0431. [DOI] [PubMed] [Google Scholar]
  5. Feldman J. F. Lengthening the period of a biological clock in Euglena by cycloheximide, an inhibitor of protein synthesis. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1080–1087. doi: 10.1073/pnas.57.4.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer R. A., Hsiao T. C. Stomatal Opening in Isolated Epidermal Strips of Vicia faba. II. Responses to KCl Concentration and the Role of Potassium Absorption. Plant Physiol. 1968 Dec;43(12):1953–1958. doi: 10.1104/pp.43.12.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Halaban R. Effects of light quality on the circadian rhythm of leaf movement of a short-day-plant. Plant Physiol. 1969 Jul;44(7):973–977. doi: 10.1104/pp.44.7.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hillman W. S. Entrainment of Lemna CO(2) Output Through Phytochrome. Plant Physiol. 1971 Dec;48(6):770–774. doi: 10.1104/pp.48.6.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Humble G. D., Raschke K. Stomatal opening quantitatively related to potassium transport: evidence from electron probe analysis. Plant Physiol. 1971 Oct;48(4):447–453. doi: 10.1104/pp.48.4.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaffe M. J. Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine. Plant Physiol. 1970 Dec;46(6):768–777. doi: 10.1104/pp.46.6.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaffe M. J. Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science. 1968 Nov 29;162(3857):1016–1017. doi: 10.1126/science.162.3857.1016. [DOI] [PubMed] [Google Scholar]
  12. Marmé D., Boisard J., Briggs W. R. Binding properties in vitro of phytochrome to a membrane fraction. Proc Natl Acad Sci U S A. 1973 Dec;70(12 Pt 1-2):3861–3865. doi: 10.1073/pnas.70.12.3861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pallas J. E., Wright B. G. Organic Acid Changes in the Epidermis of Vicia faba and Their Implication in Stomatal Movement. Plant Physiol. 1973 Mar;51(3):588–590. doi: 10.1104/pp.51.3.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Quail P. H., Marmé D., Schäfer E. Particle-bound phytochrome from maize and pumpkin. Nat New Biol. 1973 Oct 10;245(145):189–191. doi: 10.1038/newbio245189a0. [DOI] [PubMed] [Google Scholar]
  15. Racusen R., Miller K. Photochrome-induced Adhesion of Mung Bean Root Tips to Platinum Electrodes in a Direct Current Field. Plant Physiol. 1972 Apr;49(4):654–655. doi: 10.1104/pp.49.4.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rubinstein B., Drury K. S., Park R. B. Evidence for bound phytochrome in oat seedlings. Plant Physiol. 1969 Jan;44(1):105–109. doi: 10.1104/pp.44.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Satter R. L., Applewhite P. B., Kreis D. J., Galston A. W. Rhythmic Leaflet Movement in Albizzia julibrissin: Effect of Electrolytes and Temperature Alteration. Plant Physiol. 1973 Sep;52(3):202–207. doi: 10.1104/pp.52.3.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Satter R. L., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: III. Interactions between an Endogenous Rhythm and Phytochrome in Control of Potassium Flux and Leaflet Movement. Plant Physiol. 1971 Dec;48(6):740–746. doi: 10.1104/pp.48.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Satter R. L., Galston A. W. Potassium flux: a common feature of albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science. 1971 Oct 29;174(4008):518–520. doi: 10.1126/science.174.4008.518. [DOI] [PubMed] [Google Scholar]
  20. Satter R. L., Geballe G. T., Galston A. W. Potassium flux and leaf movement in Samanea saman. II. Phytochrome controlled movement. J Gen Physiol. 1974 Oct;64(4):431–442. doi: 10.1085/jgp.64.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Satter R. L., Marinoff P., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: IV. Auxin Effects on Leaflet Movement and K Flux. Plant Physiol. 1972 Aug;50(2):235–241. doi: 10.1104/pp.50.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sawhney B. L., Zelitch I. Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light. Plant Physiol. 1969 Sep;44(9):1350–1354. doi: 10.1104/pp.44.9.1350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tanada T. A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic Acid. Proc Natl Acad Sci U S A. 1968 Feb;59(2):376–380. doi: 10.1073/pnas.59.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Williams B. J., Pellett N. E., Klein R. M. Phytochrome control of growth cessation and initiation of cold acclimation in selected woody plants. Plant Physiol. 1972 Aug;50(2):262–265. doi: 10.1104/pp.50.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES