Abstract
The Na+ efflux from Na+-rich yeast cells into a cation-free medium is largely balanced by the excretion of organic anions. In the presence of Rb+, K+, or high levels of H+ (pH 3–4), the Na+ efflux is increased and the organic anion excretion is suppressed so that stoichiometric cation exchanges occur. H+ participates in the exchanges, moving into or out of the cells depending on the external pH and on the concentration of external Rb+(K+). The total cation efflux is dependent on the external Rb+ concentration in a "saturation" relationship, but the individual cations in the efflux stream are not. The discrimination factor in the efflux pathway between H+ and Na+ is very large (of the order of 10,000), and between Na+ and K+ considerable (of the order of 50). For the latter pair, the recycling of K+ from the cell wall space is an important factor in the discrimination. In addition, the Na+ efflux as a function of Na+ content follows a sigmoidal curve so that the discrimination factor is increased at high levels of cellular Na+. Although the influx and efflux pathways behave as a tightly coupled system, the mechanism of coupling is not entirely clear. A single system with different cation specificities and kinetic behaviors on the inside and outside faces of the membrane could account for the data.
Full Text
The Full Text of this article is available as a PDF (820.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARMSTRONG W. M., ROTHSTEIN A. DISCRIMINATION BETWEEN ALKALI METAL CATIONS BY YEAST. I. EFFECT OF PH ON UPTAKE. J Gen Physiol. 1964 Sep;48:61–71. doi: 10.1085/jgp.48.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong W. M., Rothstein A. Discrimination between alkali metal cations by yeast. II. Cation interactions in transport. J Gen Physiol. 1967 Mar;50(4):967–988. doi: 10.1085/jgp.50.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borst-Pauwels G. W., Schnetkamp P., van Well P. Activation of Rb + and Na + uptake into yeast by monovalent cations. Biochim Biophys Acta. 1973 Jan 2;291(1):274–279. doi: 10.1016/0005-2736(73)90419-7. [DOI] [PubMed] [Google Scholar]
- Borst-Pauwels G. W., Wolters G. H., Henricks J. J. The interaction of 2,4-dinitrophenol with anaerobic Rb+ transport across the yeast cell membrane. Biochim Biophys Acta. 1971 Feb 2;225(2):269–276. doi: 10.1016/0005-2736(71)90220-3. [DOI] [PubMed] [Google Scholar]
- CONWAY E. J., DOWNEY M. An outer metabolic region of the yeast cell. Biochem J. 1950 Sep;47(3):347–355. doi: 10.1042/bj0470347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J., DOWNEY M. pH values of the yeast cell. Biochem J. 1950 Sep;47(3):355–360. doi: 10.1042/bj0470355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J., DUGGAN F. A cation carrier in the yeast cell wall. Biochem J. 1958 Jun;69(2):265–274. doi: 10.1042/bj0690265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J., MOORE P. T. A sodium-yeast and some of its properties. Biochem J. 1954 Jul;57(3):523–528. doi: 10.1042/bj0570523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J., RYAN H., CARTON E. Active transport of sodium ions from the yeast cell. Biochem J. 1954 Sep;58(1):158–167. doi: 10.1042/bj0580158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conway E. J., O'malley E. The nature of the cation exchanges during yeast fermentation, with formation of 0.02n-H ion. Biochem J. 1946;40(1):59–67. [PMC free article] [PubMed] [Google Scholar]
- Dee E., Conway E. J. The relation between sodium ion content and efflux of labelled sodium ions from yeast. Biochem J. 1968 Mar;107(2):265–271. doi: 10.1042/bj1070265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOULKES E. C. Cation transport in yeast. J Gen Physiol. 1956 May 20;39(5):687–704. doi: 10.1085/jgp.39.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuhrmann G. F., Rothstein A. The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim Biophys Acta. 1968 Nov 5;163(3):325–330. doi: 10.1016/0005-2736(68)90117-x. [DOI] [PubMed] [Google Scholar]
- Harold F. M., Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. J Membr Biol. 1972;8(1):27–44. doi: 10.1007/BF01868093. [DOI] [PubMed] [Google Scholar]
- Harold F. M., Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion. J Membr Biol. 1972;8(1):45–62. doi: 10.1007/BF01868094. [DOI] [PubMed] [Google Scholar]
- ROTHSTEIN A., BRUCE M. The potassium efflux and influx in yeast at different potassium concentrations. J Cell Physiol. 1958 Apr;51(2):145–159. doi: 10.1002/jcp.1030510202. [DOI] [PubMed] [Google Scholar]
- ROTHSTEIN A., HAYES A., JENNINGS D., HOOPER D. The active transport of Mg++ and Mn++ into the yeast cell. J Gen Physiol. 1958 Jan 20;41(3):585–594. doi: 10.1085/jgp.41.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTHSTEIN A. Role of the cell membrane in the metabolism of inorganic electrolytes by microorganisms. Bacteriol Rev. 1959 Dec;23(4):175–201. doi: 10.1128/br.23.4.175-201.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan J. P., Ryan H. The role of intracellular pH in the regulation of cation exchanges in yeast. Biochem J. 1972 Jun;128(1):139–146. doi: 10.1042/bj1280139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ S. G., EPSTEIN W., SOLOMON A. K. CATION TRANSPORT IN ESCHERICHIA COLI. IV. KINETICS OF NET K UPTAKE. J Gen Physiol. 1963 Nov;47:329–346. doi: 10.1085/jgp.47.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slayman C. L., Slayman C. W. Net uptake of potassium in Neurospora. Exchange for sodium and hydrogen ions. J Gen Physiol. 1968 Sep;52(3):424–443. doi: 10.1085/jgp.52.3.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slayman C. W., Slayman C. L. Potassium transport in Neurospora. Evidence for a multisite carrier at high pH. J Gen Physiol. 1970 Jun;55(6):758–786. doi: 10.1085/jgp.55.6.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
