Abstract
The proton concentration in the medium affects the maximal velocity of sugar uptake with a Km of 0.3 mM (high affinity uptake). By decreasing the proton concentration a decrease in high affinity sugar uptake is observed, in parallel the activity of a low affinity uptake system (Km of 50 mM) rises. Both systems add up to 100%. The existence of the carrier in two conformational states (protonated and unprotonated) has been proposed therefore, the protonated form with high affinity to 6-deoxyglucose, the unprotonated form with low affinity. A plot of extrapolated V max values at low substrate concentration versus proton concentration results in a Km for protons of 0.14 µM, i.e. half-maximal protonation of the carrier is achieved at pH 6.85. The stoichiometry of protons cotransported per 6-deoxyglucose is close to 1 at pH 6.0–6.5. At higher pH values the stoichiometry continuously decreases; at pH 8.0 only one proton is cotransported per four molecules of sugar. Whereas the translocation of the protonated carrier is strictly dependent on sugar this coupling is less strict for the unprotonated form. Therefore at alkaline pH a considerable net efflux of accumulated sugar can occur. The dependence of sugar accumulation on pH has been measured. The decrease in accumulation with higher pH values can quantitatively be explained by the decrease in the amount of protonated carrier. The properties of the unprotonated carrier resemble strikingly the properties of carrier at the inner side of the membrane. The inside pH of Chlorella was measured with the weak acid 5,5-dimethyl-2, 4-oxazolidinedion (DMO). At an outside pH of 6.5 the internal pH was found to be 7.2. To explain the extent of sugar accumulation it has to be assumed that the membrane potential also contributes to active sugar transport in this alga.
Full Text
The Full Text of this article is available as a PDF (758.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addanki A., Cahill F. D., Sotos J. F. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++. J Biol Chem. 1968 May 10;243(9):2337–2348. [PubMed] [Google Scholar]
- Barber J. Measurement of the membrane potential and evidence for active transport of ions in Chlorella pyrenoidosa. Biochim Biophys Acta. 1968 Jun 11;150(4):618–625. doi: 10.1016/0005-2736(68)90051-5. [DOI] [PubMed] [Google Scholar]
- Butler T. C., Waddell W. J., Poole D. T. Intracellular pH based on the distribution of weak electrolytes. Fed Proc. 1967 Sep;26(5):1327–1332. [PubMed] [Google Scholar]
- Crane R. K., Forstner G., Eichholz A. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim Biophys Acta. 1965 Nov 29;109(2):467–477. doi: 10.1016/0926-6585(65)90172-x. [DOI] [PubMed] [Google Scholar]
- Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decker M., Tanner W. Respiratory increase and active hexose uptake of Chlorella vulgaris. Biochim Biophys Acta. 1972 Jun 20;266(3):661–669. doi: 10.1016/0006-3002(72)90009-1. [DOI] [PubMed] [Google Scholar]
- Eddy A. A. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem J. 1968 Jul;108(3):489–498. doi: 10.1042/bj1080489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldner A. M., Schultz S. G., Curran P. F. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol. 1969 Mar;53(3):362–383. doi: 10.1085/jgp.53.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heldt W. H., Werdan K., Milovancev M., Geller G. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta. 1973 Aug 31;314(2):224–241. doi: 10.1016/0005-2728(73)90137-0. [DOI] [PubMed] [Google Scholar]
- Inui Y., Christensen H. N. Discrimination of single transport systems. The Na plus-sensitive transport of neutral amino acids in the Ehrlich cell. J Gen Physiol. 1966 Sep;50(1):203–224. doi: 10.1085/jgp.50.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitasato H. The influence of H+ on the membrane potential and ion fluxes of Nitella. J Gen Physiol. 1968 Jul;52(1):60–87. doi: 10.1085/jgp.52.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinzeller A., Kolínská J., Benes I. Transport of monosaccharides in kidney-cortex cells. Biochem J. 1967 Sep;104(3):852–860. doi: 10.1042/bj1040852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komor E., Haass D., Komor B., Tanner W. The active hexose-uptake system of Chlorella vulgaris. Km-values for 6-deoxyglucose influx and efflux and their contribution to sugar accumulation. Eur J Biochem. 1973 Nov 1;39(1):193–200. doi: 10.1111/j.1432-1033.1973.tb03117.x. [DOI] [PubMed] [Google Scholar]
- Komor E., Haass D., Tanner W. Unusual features of the active hexose uptake system of Chlorella vulgaris. Biochim Biophys Acta. 1972 Jun 20;266(3):649–660. doi: 10.1016/0006-3002(72)90008-x. [DOI] [PubMed] [Google Scholar]
- Komor E., Loos E., Tanner W. A confirmation of the proposed model for the hexose uptake system of Chlorella vulgaris. Anaerobic studies in the light and in the dark. J Membr Biol. 1973;12(1):89–99. doi: 10.1007/BF01869993. [DOI] [PubMed] [Google Scholar]
- Komor E., Tanner W. Characterization of the active hexose transport system of Chlorella vulgaris. Biochim Biophys Acta. 1971 Jul 6;241(1):170–179. doi: 10.1016/0005-2736(71)90314-2. [DOI] [PubMed] [Google Scholar]
- Komor E., Tanner W. The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Eur J Biochem. 1974 May 2;44(1):219–223. doi: 10.1111/j.1432-1033.1974.tb03476.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
- Seaston A., Inkson C., Eddy A. A. The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem J. 1973 Aug;134(4):1031–1043. doi: 10.1042/bj1341031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner W. Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commun. 1969 Jul 23;36(2):278–283. doi: 10.1016/0006-291x(69)90326-x. [DOI] [PubMed] [Google Scholar]
- Vidaver G. A., Shepherd S. L. Transport of glycine by hemolyzed and restored pigeon red blood cells. Symmetry properties, trans effects of sodium ion and glycine, and their description by a single rate equation. J Biol Chem. 1968 Dec 10;243(23):6140–6150. [PubMed] [Google Scholar]
- West I., Mitchell P. Proton-coupled beta-galactoside translocation in non-metabolizing Escherichia coli. J Bioenerg. 1972 Aug;3(5):445–462. doi: 10.1007/BF01516082. [DOI] [PubMed] [Google Scholar]
- Wheeler K. P., Christensen H. N. Interdependent fluxes of amino acids and sodium ion in the pigeon red blood cell. J Biol Chem. 1967 Sep 10;242(17):3782–3788. [PubMed] [Google Scholar]