Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1974 Aug 1;64(2):186–200.

Discrete Waves and Phototransduction in Voltage-damped Ventral Photoreceptors

Michael Behbehani 1, Richard Srebro 1
PMCID: PMC2226171  PMID: 4846766

Abstract

Discrete waves in the voltage-clamped photoreceptor of Limulus are remarkably similar in all essential properties to those found in an unclamped cell. The latency distribution of discrete waves is not affected by considerable changes in the holding potential in a voltage-clamped cell. Both large and small waves occur in voltage-clamped and unclamped cells and in approximately the same proportion. Large and small waves also share the same latency distributions and spectral sensitivity. We suggest that small waves may result from the activation of damaged membrane areas. Large waves have an average amplitude of approximately 5 nA in voltage-clamped photoreceptors. It probably requires several square microns of cell membrane to support this much photo-current. Thus the amplification inherent in the discrete wave process may involve spatial spread of activation from unimolecular dimensions to several square microns of cell membrane surface. Neither local current flow, nor pre-packaging of any transmitter substance appears to be involved in the amplification process. The possible mechanisms of the amplification are evaluated with relationship to the properties of discrete waves.

Full Text

The Full Text of this article is available as a PDF (950.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass L., Moore W. J. An electrochemical model for depolarization of a retinula cell of Limulus by a single photon. Biophys J. 1970 Jan;10(1):1–19. doi: 10.1016/S0006-3495(70)86282-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borsellino A., Fuortes M. G. Responses to single photons in virual cells of limulus. J Physiol. 1968 Jun;196(3):507–539. doi: 10.1113/jphysiol.1968.sp008521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark A. W., Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. I. The microanatomy. J Gen Physiol. 1969 Sep;54(3):289–309. doi: 10.1085/jgp.54.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehrenstein G., Lecar H. The mechanism of signal transmission in nerve axons. Annu Rev Biophys Bioeng. 1972;1:347–368. doi: 10.1146/annurev.bb.01.060172.002023. [DOI] [PubMed] [Google Scholar]
  6. Fein A., DeVoe R. D. Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance. J Gen Physiol. 1973 Mar;61(3):273–289. doi: 10.1085/jgp.61.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KATZ B., MILEDI R. PROPAGATION OF ELECTRIC ACTIVITY IN MOTOR NERVE TERMINALS. Proc R Soc Lond B Biol Sci. 1965 Feb 16;161:453–482. doi: 10.1098/rspb.1965.0015. [DOI] [PubMed] [Google Scholar]
  9. Lasansky A. Cell junctions in ommatidia of Limulus. J Cell Biol. 1967 May;33(2):365–383. doi: 10.1083/jcb.33.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lisman J. E., Brown J. E. Two light-induced processes in the photoreceptor cells of Limulus ventral eye. J Gen Physiol. 1971 Nov;58(5):544–561. doi: 10.1085/jgp.58.5.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Srebro R., Behbehani M. A stochastic model for discrete waves in the Limulus photoreceptor. J Gen Physiol. 1971 Sep;58(3):267–286. doi: 10.1085/jgp.58.3.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Srebro R., Behbehani M. The thermal origin of spontaneous activity in the Limulus photoreceptor. J Physiol. 1972 Jul;224(2):349–361. doi: 10.1113/jphysiol.1972.sp009899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Srebro R., Yeandle S. Stochastic properties of discrete waves of the limulus photoreceptor. J Gen Physiol. 1970 Dec;56(6):751–767. doi: 10.1085/jgp.56.6.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yeandle S., Spiegler J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J Gen Physiol. 1973 May;61(5):552–571. doi: 10.1085/jgp.61.5.552. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES